|
1Gascon, J. et al. Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chem. Mater. 24, 2829-2844, doi:10.1021/cm301435j (2012). 2Valtchev, V. & Tosheva, L. Porous Nanosized Particles: Preparation, Properties, and Applications. Chem. Rev. 113, 6734-6760, doi:10.1021/cr300439k (2013). 3Parlett, C. M. A., Wilson, K. & Lee, A. F. Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876-3893, doi:10.1039/c2cs35378d (2013). 4Ivanova, II & Knyazeva, E. E. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chem. Soc. Rev. 42, 3671-3688, doi:10.1039/c2cs35341e (2013). 5Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuator B: Chem. 140, 319-336, doi:http://dx.doi.org/10.1016/j.snb.2009.04.026 (2009). 6Yu, N., Wang, R. Z. & Wang, L. W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489-514, doi:10.1016/j.pecs.2013.05.004 (2013). 7Serrano, D. P., Aguado, J. & Escola, J. M. Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2, 1924-1941, doi:10.1021/cs3003403 (2012). 8Moliner, M., Martinez, C. & Corma, A. Multipore Zeolites: Synthesis and Catalytic Applications. Angew. Chem.-Int. Edit. 54, 3560-3579, doi:10.1002/anie.201406344 (2015). 9Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584-611, doi:10.1039/c5cs00859j (2016). 10Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044-7111, doi:10.1039/c5cs00029g (2015). 11Buonomenna, M. G. Nano-enhanced reverse osmosis membranes. Desalination 314, 73-88, doi:10.1016/j.desal.2013.01.006 (2013). 12Kim, W. G. & Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908-924, doi:10.1016/j.ces.2013.09.047 (2013). 13Shenvi, S. S., Isloor, A. M. & Ismail, A. F. A review on RO membrane technology: Developments and challenges. Desalination 368, 10-26, doi:10.1016/j.desal.2014.12.042 (2015). 14Daer, S., Kharraz, J., Giwa, A. & Hasan, S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 367, 37-48, doi:10.1016/j.desal.2015.03.030 (2015). 15Mousty, C. & Walcarius, A. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J. Solid State Electrochem. 19, 1905-1931, doi:10.1007/s10008-014-2570-4 (2015). 16Shaikhutdinov, S. & Freund, H. J. Ultra-thin silicate films on metals. J. Phys.-Condes. Matter 27, 15, doi:10.1088/0953-8984/27/44/443001 (2015). 17Mandal, S., Williams, H. L. & Hunt, H. K. Techniques for microscale patterning of zeolite-based thin films. Microporous Mesoporous Mat. 203, 245-258, doi:10.1016/j.micromeso.2014.10.038 (2015). 18Mir, M. A. et al. Utilization of zeolite/polymer composites for gas sensing: A review. Sens. Actuator B-Chem. 242, 1007-1020, doi:10.1016/j.snb.2016.09.152 (2017). 19Fine, G. F., Cavanagh, L. M., Afonja, A. & Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 10, 5469-5502, doi:10.3390/s100605469 (2010). 20Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential. J. Membr. Sci. 370, 1-22, doi:10.1016/j.memsci.2010.12.036 (2011). 21Varoon, K. et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science 334, 72-75, doi:10.1126/science.1208891 (2011). 22Chen, H. Y. et al. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 133, 12390-12393, doi:10.1021/ja2046815 (2011). 23Ma, N., Wei, J., Liao, R. H. & Tang, C. Y. Y. Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci. 405, 149-157, doi:10.1016/j.memsci.2012.03.002 (2012). 24Lew, C. M., Cai, R. & Yan, Y. Zeolite Thin Films: From Computer Chips to Space Stations. Acc. Chem. Res. 43, 210-219, doi:10.1021/ar900146w (2010). 25Lind, M. L., Suk, D. E., Nguyen, T. V. & Hoek, E. M. V. Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RD Membrane Performance. Environ. Sci. Technol. 44, 8230-8235, doi:10.1021/es101569p (2010). 26Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K. & Hoek, E. M. V. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261, 255-263, doi:10.1016/j.desa1.2010.06.008 (2010). 27Huang, L. et al. Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals. J. Am. Chem. Soc. 122, 3530-3531, doi:10.1021/ja994240u (2000). 28Claes, S. et al. Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J. Membr. Sci. 389, 265-271, doi:10.1016/j.memsci.2011.10.035 (2012). 29Verboekend, D. & Perez-Ramirez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879-890, doi:10.1039/c1cy00150g (2011). 30Li, K. H., Valla, J. & Garcia-Martinez, J. Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem 6, 46-66, doi:10.1002/cctc.201300345 (2014). 31Inayat, A., Reinhardt, B., Uhlig, H., Einicke, W. D. & Enke, D. Silica monoliths with hierarchical porosity obtained from porous glasses. Chem. Soc. Rev. 42, 3753-3764, doi:10.1039/c2cs35304k (2013). 32Schwieger, W. et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353-3376, doi:10.1039/c5cs00599j (2016). 33Roth, W. J., Gil, B., Makowski, W., Marszalek, B. & Eliasova, P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 45, 3400-3438, doi:10.1039/c5cs00508f (2016). 34Schneider, D., Mehlhorn, D., Zeigermann, P., Karger, J. & Valiullin, R. Transport properties of hierarchical micro-mesoporous materials. Chem. Soc. Rev. 45, 3439-3467, doi:10.1039/c5cs00715a (2016). 35Qin, Z. X., Gilson, J. P. & Valtchev, V. Mesoporous zeolites by fluoride etching. Curr. Opin. Chem. Eng. 8, 1-6, doi:10.1016/j.coche.2015.01.002 (2015). 36Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes - a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128-7154, doi:10.1039/C5CS00292C (2015). 37Snyder, M. A. & Tsapatsis, M. Hierarchical Nanomanufacturing: From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes. Angew. Chem., Int. Ed. 46, 7560-7573, doi:10.1002/anie.200604910 (2007). 38Lai, Z. et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 300, 456-460, doi:10.1126/science.1082169 (2003). 39Pham, T. C. T., Kim, H. S. & Yoon, K. B. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 334, 1533-1538, doi:10.1126/science.1212472 (2011). 40Huang, A. S., Liang, F. Y., Steinbach, F. & Caro, J. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J. Membr. Sci. 350, 5-9, doi:10.1016/j.memsci.2009.12.029 (2010). 41White, J. C., Dutta, P. K., Shqau, K. & Verweij, H. Synthesis of Ultrathin Zeolite Y Membranes and their Application for Separation of Carbon Dioxide and Nitrogen Gases. Langmuir 26, 10287-10293, doi:10.1021/la100463j (2010). 42Adams, R. T. et al. CO2-CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 367, 197-203, doi:10.1016/j.memsci.2010.10.059 (2011). 43Nik, O. G., Chen, X. Y. & Kaliaguine, S. Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 379, 468-478, doi:10.1016/j.memsci.2011.06.019 (2011). 44Palomino, M., Corma, A., Rey, F. & Valencia, S. New Insights on CO2-Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir 26, 1910-1917, doi:10.1021/la9026656 (2010). 45Wen, Q., Di, J. C., Jiang, L., Yu, J. H. & Xu, R. R. Zeolite-coated mesh film for efficient oil-water separation. Chem. Sci. 4, 591-595, doi:10.1039/c2sc21772d (2013). 46Wang, Y. & Caruso, F. Macroporous Zeolitic Membrane Bioreactors. Adv. Funct. Mater. 14, 1012-1018, doi:10.1002/adfm.200400144 (2004). 47Bosko, M. L., Munera, J. F., Lombardo, E. A. & Cornaglia, L. M. Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support. J. Membr. Sci. 364, 17-26, doi:10.1016/j.memsci.2010.07.039 (2010). 48Kim, S. J., Xu, Z., Reddy, G. K., Smirniotis, P. & Dong, J. H. Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor. Ind. Eng. Chem. Res. 51, 1364-1375, doi:10.1021/ie201452y (2012). 49Zhang, Y. T., Wu, Z. J., Hong, Z., Gu, X. H. & Xu, N. P. Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem. Eng. J. 197, 314-321, doi:10.1016/j.cej.2012.05.064 (2012). 50Sachse, A., Galarneau, A., Fajula, F. & Coq, B. Synthesis of Zeolite Monoliths for Flow Continuous Processes. The Case of Sodalite as a Basic Catalyst. Chem. Mater. 22, 4123-4125, doi:10.1021/cm1014064 (2010). 51Khajavi, S., Jansen, J. C. & Kapteijn, F. Application of a sodalite membrane reactor in esterification-Coupling reaction and separation. Catal. Today 156, 132-139, doi:10.1016/j.cattod.2010.02.042 (2010). 52Tang, Z., Kim, S. J., Reddy, G. K., Dong, J. H. & Smirniotis, P. Modified zeolite membrane reactor for high temperature water gas shift reaction. J. Membr. Sci. 354, 114-122, doi:10.1016/j.memsci.2010.02.057 (2010). 53Wang, X. B., Zhang, X. F., Liu, H., Yeung, K. L. & Wang, J. Q. Preparation of titanium silicalite-1 catalytic films and application as catalytic membrane reactors. Chem. Eng. J. 156, 562-570, doi:10.1016/j.cej.2009.04.018 (2010). 54He, Y., Bagley, D. M., Leung, K. T., Liss, S. N. & Liao, B. Q. Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol. Adv. 30, 817-858, doi:10.1016/j.biotechadv.2012.01.015 (2012). 55Seo, T. et al. Influence of Synthesis Process on Mechanical and Electrical Characteristics of Mesoporous Pure Silica-Zeolite. J. Electrochem. Soc. 158, H659-H665, doi:10.1149/1.3570582 (2011). 56Wu, G. D., Zhang, H. L., Zhou, J. M., Huang, A. S. & Wan, Q. Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J. Mater. Chem. C 1, 5669-5674, doi:10.1039/c3tc31236d (2013). 57Mandal, S., Planells, A. D. & Hunt, H. K. Impact of deposition and laser densification of Silicalite-1 films on their optical characteristics. Microporous Mesoporous Mat. 223, 68-78, doi:10.1016/j.micromeso.2015.10.035 (2016). 58Mandal, S., Macoubrie, D. & Hunt, H. K. Patterning silicalite-1 films using carbon dioxide laser ablation. Microporous Mesoporous Mat. 204, 81-90, doi:10.1016/j.micromeso.2014.10.046 (2015). 59Choi, M. et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 5, 718-723, doi:http://www.nature.com/nmat/journal/v5/n9/suppinfo/nmat1705_S1.html (2006). 60Möller, K. & Bein, T. Pores Within Pores—How to Craft Ordered Hierarchical Zeolites. Science 333, 297-298, doi:10.1126/science.1208528 (2011). 61Jiang, J. et al. Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science 333, 1131-1134, doi:10.1126/science.1208652 (2011). 62Chen, L.-H. et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 22, 17381-17403, doi:10.1039/C2JM31957H (2012). 63Zhang, B., Davis, S. A. & Mann, S. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films. Chem. Mater. 14, 1369-1375, doi:10.1021/cm011251p (2002). 64Kirdeciler, S. K., Ozen, C. & Akata, B. Fabrication of nano- to micron-sized patterns using zeolites: Its application in BSA adsorption. Microporous Mesoporous Mat. 191, 59-66, doi:http://dx.doi.org/10.1016/j.micromeso.2014.02.041 (2014). 65Tsukala, V. & Kouzoudis, D. Zeolite micromembrane fabrication on magnetoelastic material using electron beam lithography. Microporous Mesoporous Mat. 197, 213-220, doi:http://dx.doi.org/10.1016/j.micromeso.2014.06.017 (2014). 66Ha, K. et al. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel. Adv. Mater. 13, 594-596, doi:10.1002/1521-4095(200104)13:8<594::aid-adma594>3.0.co;2-o (2001). 67Ha, K., Lee, Y. J., Jung, D. Y., Lee, J. H. & Yoon, K. B. Micropatterning of oriented zeolite monolayers on glass by covalent linkage. Adv. Mater. 12, 1614-1617, doi:10.1002/1521-4095(200011)12:21<1614::aid-adma1614>3.0.co;2-h (2000). 68Yang, P. et al. Hierarchically Ordered Oxides. Science 282, 2244 (1998). 69Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917-926, doi:doi:10.1107/S1600576715004434 %U https://doi.org/10.1107/S1600576715004434 (2015). 70Kulak, A., Lee, Y. J., Park, Y. S. & Yoon, K. B. Orientation‐Controlled Monolayer Assembly of Zeolite Crystals on Glass and Mica by Covalent Linkage of Surface‐Bound Epoxide and Amine Groups. Angew. Chem. 112, 980-983 (2000). 71Liu, Y., Li, Y. & Yang, W. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth. J. Am. Chem. Soc. 132, 1768-1769 (2010). 72Choi, J., Ghosh, S., Lai, Z. & Tsapatsis, M. Uniformly a‐Oriented MFI Zeolite Films by Secondary Growth. Angew. Chem. 118, 1172-1176 (2006). 73Sahraei, N., Forberich, K., Venkataraj, S., Aberle, A. G. & Peters, M. Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si: H solar cells. Opt. Express 22, A53-A67 (2014).
|