跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.96) 您好!臺灣時間:2026/01/23 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡政杰
研究生(外文):Cheng-Chieh Tsai
論文名稱:氯化鈉對水稻幼苗根生長與發育之影響
論文名稱(外文):Effect of NaCl on the growth and development of rice seedling roots
指導教授:許奕婷
口試委員:高景輝陳宗禮黃文理洪傳揚
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:氯化鈉水稻生長發育
外文關鍵詞:NaClricerootgrowthdevelopment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以水稻台中在來一號 (Oryza sativa L. cv. Taichung Native 1) 為材料,探討鹽分逆境下,Ca2+、nitric oxide (NO) 及auxin 對水稻黃化幼苗主根生長及冠根形成之影響。
高鹽逆境 (150 mM NaCl) 會抑制水稻冠根之形成,而處理氯化鈣 (CaCl2)、一氧化氮釋放劑 sodium nitroprusside (SNP) 及植物生長素indole -3- acetic acid (IAA) 可顯著減緩高鹽逆境對冠根形成的抑制,進一步利用石蠟切片發現冠根原基發育與上述結果一致。而處理一氧化氮清除劑2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl -3-oxide (cPTIO) 結果則抑制CaCl2的作用,顯示高鹽逆境下NO參與Ca2+ 調控冠根發育之機制。利用 nitrate reductase (NR) 抑制劑sodium tungstate處理後可完全抑制高鹽逆境下Ca2+ 恢復冠根發育的作用,但 nitric oxide synthase (NOS) 抑制劑Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) 處理則無顯著影響,結果顯示高鹽逆境下 Ca2+ 主要經由NR途徑生成NO。以auxin 極性運移influx蛋白抑制劑1-Naphthoxyacetic acid (1-NOA) 及efflux蛋白抑制劑N-1-Naphthylphthalamidic acid (NPA) 處理後,Ca2+ 及NO之作用僅受NPA抑制,推測IAA極性運移也參與Ca2+ 及NO恢復水稻幼苗於高鹽逆境下冠根形成之作用。且高鹽逆境下CaCl2 恢復冠根之形成不受guanylate cyclase (GC) 抑制劑 LY83583 及 calmodulin 拮抗劑 chlorpromazine hydrochloride (CPZ) 影響。
低鹽逆境 (25 mM NaCl) 可誘導水稻冠根之形成,但可被1-NOA、NPA、cPTIO 及L-NAME處理所抑制,且 IAA 能明顯恢復 cPTIO 之抑制效果。CPZ、cyclic ADP ribose (cADPR) 合成抑制劑 NA、Ca2+ 螯合劑 EGTA、Ca2+ 原生質膜通道抑制劑 LaCl3 與 ruthenium red (RR) 處理皆不影響低鹽逆境誘導之冠根形成,但受LY83583、inositol 1,4,5-trisphosphate (IP3) 循環抑制劑 LiCl 所抑制。推測低鹽逆境下可能是經IP3 調控細胞質 Ca2+ 濃度,影響 NO、IAA 及cGMP 進而誘導冠根之形成。
處理CaCl2 可明顯減緩高鹽逆境抑制之主根生長,且CaCl2 之作用可被CPZ所抑制,顯示高鹽逆境下 CaCl2 可能經由 calmodulin 減緩主根生長受抑制之情形。


In this thesis, rice (Oryza sativa L. cv. Taichung Native 1) seedlings were used to investigate the role of Ca2+, nitric oxide (NO) and auxin in the regulation of primary root (PR) growth and crown root (CR) emergence in salt stress.
In high salt stress (150 mM NaCl), the CR of rice seedlings was reduced. Application of calcium chloride (CaCl2), sodium nitroprusside (SNP; a NO donor) and indole-3-acetic acid (IAA) to rice seedlings induced CR emergence in high salt stress. Further research on the CR primordia by paraffin section, the result is consistent with above. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)- 4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide (cPTIO) blocked the action of CaCl2. These results suggest the involvement of NO in regulating Ca2+ induced CR emergence in high salt stress. Nitrate reductase (NR) inhibitor sodium tungstate inhibited Ca2+ induced CR emergence in high salt stress. In contrast, nitric oxide synthase (NOS) inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) was not significant. It means that NO generation that occurs in response to Ca2+ might primarily involve NR activity in high salt stress. Treatment of seedlings with auxin polar transport influx protein inhibitors 1-Naphthoxyacetic acid (1-NOA) and efflux protein inhibitors N-1-Naphthylphthalamidic acid (NPA), the result indicate that only NPA reduced to response in both Ca2+ and NO. Moreover, guanylate cyclase (GC) inhibitor LY83583 and calmodulin antagonists (CPZ) had no effect on Ca2+ induced CR emergence in high salt stress.
On the other hand, low salt stress (25 mM NaCl) increased the rice seedlings CR emergence, which could be blocked by 1-NOA, NPA, cPTIO and L-NAME. Moreover, application of rice seedlings with IAA resulted in a significant increase in cPTIO treatment. Supplemental CPZ, cADPR synthesis inhibitor (NA), Ca2+ chelator (EGTA), plasma membrane Ca2+-channels inhibitors (LaCl3, RR) had no effect on increased of CR emergence by low salt stress. However, low salt stress increased CR emergence could be reduced by LY83583 and IP3 cycling inhibitor (LiCl). Therefore, our results demonstrated that NO, IAA and cGMP are involved in Ca2+ induced the rice CR emergence in low salt stress. Moreover, cytosolic levels of Ca2+ maybe regulated by IP3.
Treatment of CaCl2 to rice seedlings also induced PR growth in high salt stress, which could be reduced by CPZ. These results indicate that calmodulin are involved in Ca2+ induced the PR growth in high salt stress.


中文摘要………………………………………………………..i
英文摘要………………………………………………………iii
目錄…………………………………………………………….v
圖表目錄………………………………………………………vi
縮寫字對照表………………………………………………..viii
前言…………………………………………………………….1
前人研究……………………………………………………….3
材料與方法…………………………………………………...17
結果…………………………………………………………...24
討論…………………………………………………………...57
未來研究方向………………………………………………...66
參考文獻……………………………………………………...67


蔡淑華 (2005) 植物解剖學。臺北:國立編譯館。pp. 30-50。
Al-Karaki GN (2000) Growth, water use efficiency, and sodium and potassium acquisition by tomato cultivars grown under salt stress. J Plant Nutr 23: 1-8
Almansouri M, Kinet J, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231: 243-254
Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166: 3-16
Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, de Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling - an overview. Semin Cell Dev Biol 12: 3-10
Burssens S, Himanen K, van de Cotte B, Beeckman T, van Montagu M, Inze D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211: 632-640
Celenza J, Griafi P, Fink G (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9: 2131-2142
Chen YH, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249: 187-195
Chuang HW, Zhang W, Gray WM (2004) Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCFTIR1 ubiquitin ligase. Plant Cell 16: 1883-1897
Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8: 197-199
Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5: 1773-1784
Cramer G.R, Lynch J, Lauchli A, Epstein E (1987) Influx of Na+ , K+ , and Ca2+ into roots of salt-stressed cotton seedlings. Plant Physiol 83: 510-516
Croser C, Renault S, Franklin J, Zwiazek J (2001) The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut 115: 9-16
Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43: 17-28
Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Env Exp Bot 53: 247-257
Drew MC, Gunther J, Lauchli A (1988) The combined effects of salinity and root anoxia on growth and net Na+ and K+ accumulation in Zea mays grown in solution culture. Ann Bot 61: 41-53
Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system of barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J Exp Bot 26: 79-90
Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24: 1189-1202
Estelle M (1992) The plant hormone auxin: insight in sight. Bioessays 14: 439-444
Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun T, Deng XW (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16: 1870-1882
Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319
Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant
Mol Biol 69: 437-449
Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14: 1-7
Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47: 39-50
Gibberd MR, Turner NC, Storey R (2002) Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Ann Bot 90: 715-724
Goh CS, Lee Y, Kim S (2012) Calcium could be involved in auxin-regulated maintenance of the quiescent center in the Arabidopsis root. J Plant Biol 55: 143-150
Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28: 439-478
Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21: 183-187
Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. Symp Soc Exp Biol 40: 5-29
Guimaraes FVA, de Lacerda CF, Marques EC, de Miranda MRA, de Abreu CEB, Prisco JT, Gomes-Filho E (2011) Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regul 65: 55-63
Guo K, Xia K, Yang XM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59: 3443-3452
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499
He HY, He LF, Gu MH, Li XF (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant
Sci 183: 123-130
He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44: 903-916
Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17: 1387-1396
Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46: 23-47
Itoh K, Nakamura Y, Kawata H, Yamada T, Ohta E, Sakata M (1987) Effect of osmotic stress on turgor pressure in mung bean root cells. Plant Cell Physiol 28: 987-994
Ivanchenko M, Muday G, Dubrovsky J (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55: 335-347
Jana S, Choudhuri M (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquart Bot 12: 345-354
Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5: 233-238
Khan MH, Panda SK (2002) Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress. Biol Plant 45: 625-627
Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32: 121-132
Khan MH, Singha Ksh LB, Panda SK (2002) Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24: 145-148
Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40: 75-87
Kolbert Z, Bartha B, Erdein L (2008) Exogenous auxin-induced NO is nitrate reductase-associated in Arabidopsis thaliana root primodia. J Plant Physiol 165: 967-975
Kopittke PM (2012) Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant Soil 352: 353-362
Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62: 4215-4228
Kumar S, Dhingra A, Daniell H (2004) Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136: 2843-2854
Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82: 1102-1106
Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57: 1341-1351
Lazof D, Bernstein N (1998) The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium. Adv Bot Res 29: 113-189
Lin CC, Kao CH (2001) Relative importance of Na+, Cl-, and abscisic acid in NaCl induced inhibition of root growth of rice seedlings. Plant Soil 237: 165-171
Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29: 751-760
Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43: 47-56
Li W, Komatsu S (2000) Cold stress induced calcium-dependent protein kinases in rice (Oryza sativa L.) seedling stem tissues. Theor Appl Genet 101: 355-363
Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109: 7-13
Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28: 67-77
Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127: 899-909
Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50: 227-231
Marchant A, Bhalerao R, Casimiro I, Eklof J, Cassero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling.
Plant Cell 14: 589-597
Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12: 534-540
Munns R (1993) Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ 16: 15-24
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681
Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179: 595-614
Pagnussat GC, Lanteri ML., Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132: 1241-1248
Pagnussat GC, Lanteri ML, Lombardoand MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135: 279-285
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129: 954-956
Panda SK, Khan MH (2003) Salt stress influences lipid peroxidation and antioxidants in the leaf of an indica rice (Oryza sativa L). Physiol Mol Biol Plants 9: 273-278
Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants : a review. Ecotox Environ Safe 60: 324-349
Plett DC, Moller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33: 612-626
Potters G, Pasternak TP, Guisez Y, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12: 98-105
Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses, integrating a plethora of pathways. Plant Cell Environ 32: 158-169
Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459: 1071-1078
Sharp RE, Silk WK, Hsiao TC (1988) Growth of the maize primary root at low water potentials. Plant Physiol 87: 50-57
Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45: 542-550
Stohr C, Ullrich WJ (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53: 2293-2303
Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146: 178-188
Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333: 297-306
Ungar I (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83: 604-607
van der Wheele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient agar media. J Exp Bot 51: 1555-1562
Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P (2011) OsCAND1 is required for crown root emergence in rice. Mol Plant 4: 289-299
Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166: 1637-1645
West G, Inze D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135: 1050-1058
Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009a) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable
for crown root primordia initiation in rice seedlings. Planta 230: 599-610
Xiong J, Tao L, Zhu C (2009b) Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots? Plant Signal Behav 4: 999-1001
Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142: 1065-1074
Yang G, Shen S, Yang S, Komatsu S (2003) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem 41: 369-374
Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407-409
Zhang HM, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96: 6529-6534
Zhang YY, Wang LL, Liu YL, Zhang Q, Wei QP, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224: 545-555
Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11: 16-22
Zhao Y, Wang T, Zhang W, Li X (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189: 1122-1134
Zheng CF, Jiang D, Liu FL, Dai TB, Liu WC, Jing Q, Cao WX (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67: 222-227
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273
Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445
Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RH, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19: 3019-3036
Zolla G, Heimer YM, Barak S (2010) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61: 211-224


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊