跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊志偉
論文名稱:聚乙烯醇/蒙脫土、聚丙烯/蒙脫土奈米複合材料之製備
論文名稱(外文):Preparation of PVA/Montmorillonite and PP/Montmorillonite Nanocomposite
指導教授:傅文榮
指導教授(外文):Wen-Rong Fu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:54
中文關鍵詞:奈米複合材料聚丙烯聚乙烯醇蒙脫土
外文關鍵詞:nanocompositePPPVAmontmorillonite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對不同親水性質的高分子-聚丙烯(polypropylene,PP)與聚乙烯醇(poly(vinyl alcohol),PVA),分別以熔融插層與溶液插層的方式來製備聚丙烯/蒙脫土以及聚乙烯醇/蒙脫土奈米複合材料。蒙脫土在高分子中的分散程度可藉由X光繞射儀(X-ray Diffraction,XRD)的分析來說明。以十六烷基氯化砒啶(Cetylpyridinium chloride,CPC)對蒙脫土進行改質, CPC與蒙脫土層間陽離子進行離子交換後,蒙脫土層間間距可增加到2.21nm。未經改質的蒙脫土直接與PVA複合後可形成插層型(intercalated)的奈米複合材料,蒙脫土經由CPC改質後與PVA複合,可得到脫層型(exfoliated)的奈米複合材料。親水性較差的15A蒙脫土與PVA複合後亦可形成插層型的奈米複合材料。PP與蒙脫土直接作用時,不具有插層的效果,經過CPC改質的蒙脫土與15A蒙脫土,與PPMA(polypropylene graft maleic acid)及PP混煉後可形成插層型的奈米複合材料。PVA/蒙脫土奈米複合材料在DSC(Differential Scanning Calorimeter,DSC)分析圖上有兩個吸熱峰,PVA與蒙脫土鍵結的部分熔點較高,未鍵結的部分熔點較低。
Nanocomposites of polypropylene (PP)/montmorillonite and poly(vinyl alcohol) (PVA)/montmorillonite were prepared by melt and solution intercalation, respectively. The extent of dispersion of montmorillonite in polymer matrix could be confirmed by X-ray diffraction (XRD). Cetylpyridinium chloride (CPC) was used to modify the montmorillonite, and the interlayer distance was increased to 2.21 nm after the ion exchange with the cation between CPC and montmorillonite. Un-modified montmorillonite mixed with PVA could form intercalated nanocomposite, and exfoliated nanocomposites after the montmorillonite modified by CPC. An intercalated nanocomposite was formed by mixing PVA with 15A montmorillonite, which was less hydrophilic than CPC montmorillonite. PP mixed with montmorillonite did not show intercalation. Both CPC Montmorillonite and 15A montmorillonite blended with PPMA (polypropylene graft maleic anhydride) and PP could form intercalated nanocomposites. The DSC (Differential Scanning Calorimeter) curve of PVA/montmorillonite nanocomposite showed two peaks of heat adsorption. Binding of PVA and montmorillonite exhibited higher melting point than the region where there was no binding.
中文摘要 VIII
英文摘要 IX
第一章 前言 1
第二章 文獻整理 3
2-1 研究背景 3
2-2 聚乙烯醇 7
2-3 蒙脫土的結構與性質 8
2-4 黏土的改質 10
2-5 高分子奈米複合材料之製備 12
2-5-1 溶液插層法 12
2-5-2 原位聚合法 12
2-5-2 熔融插層法 13
2-6 黏土/高分子的分散型態 14
2-6-1相分離型的微米級複合材料 14
2-6-2 插層型奈米複合材料 14
2-6-3 脫層型奈米複合材料 15
2-7聚丙烯奈米複合材料之相關研究 17
第三章 材料與方法 20
3-1 實驗材料 20
3-2 實驗儀器 22
3-3 實驗步驟 23
3-4 材料測試與分析 29
3-4-1 XRD分析 29
3-4-2 DSC分析 32
第四章 結果與討論 33
4-1 KSF蒙脫土的改質 33
4-2 PVA/蒙脫土複合材料 35
4-3 PP/蒙脫土複合材料 39
4-4 PP/PPMA/蒙脫土複合材料 40
4-5 高分子/蒙脫土複合材料之DSC分析 43
第五章 結論 50
第六章 參考文獻 51
林景正、賴宏仁,1999。奈米材料技術與發展趨勢。工業材料,153(9):95-101。
吳仁傑,1997。納米複合材料聚合技術。工業材料,125(5):115-119。
滕榮厚,1997。納米級材料的內涵、判據及其研究方向。粉末冶金會刊,22(4):347-352。
蔡中燕,1998。奈米級無機材料的發展與應用。化工資訊,1998(2):28-42。
Akelah, A., Kelly, P., Qutubuddin, S., and Moet, A. 1994. Synthesis and characterization of ‘epoxyphilic’ montmorillonites. Clay Miner., 29:169-178.
Alexandre, M., and Dubois, P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28:1-63.
Andrievski, R.A. and Glezer, A.M. 2001. Size effect in properties of nanomaterials. Spripta Mater., 44:1621-1624.
Barrer, R.M. 1989. Shape-selective sorbents based on clay minerals. Clays Clay Miner., 37(5):385-395.
Cho, J.W. and Paul, D.R. 2001. Nylon 6 nanocomposites by melt compounding. Polymer, 42:1083-1094.
Choy, J.H., Kwak, S.Y., Han, Y.S., and Kim, B.W. 1997. New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Miner. Lett., 33:143-147.
Cohen, M.L., 2001. Nanotubes, nanoscience, and nanotechnology. Mater. Sci. Eng. C, 15:1-11.
Emerson, W.W. 1957. Organo-clay complexes. Nature, 180(6):48-49.
Favre, H., and Lagaly, G. 1991. Organo-bentonites with quaternary alkylammonium ions. Clay Miner., 26:19-32.
Fritz, H., Maier, M., and Bayer, E. 1997. Cationic polystyrene nanoparticles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J. Colloid Interface Sci., 195:272-288.
Gopakumar, T.G., Lee, J.A., Kontopoulou, M., and Parent, J.S. 2002. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 43:5483-5491.
Kaempfer, D., Thomann, R., and Mülhaupt, R. 2002. Melt compounding of syndiotatic polypropylene nanocomposites containing organophilic layered silicates and in situ formed core/shell nanoparticles. Polymer, 43:2909-2916.
Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., and Okada, A. 1997. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules, 30:6333-6338.
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O. 1993. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res., 8(5):1185-1189.
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O. 1993. Sorption of water in nylon 6-clay hybrid. J. Appl.Polym. Sci., 49:1259-1264.
Komarneni, S. 1992. Nanocomposites. J. Mater. Chem., 2(12):1219-1230.
Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E., and Boyd, S.A. 1990. Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays Clay Miner., 38(2):113-120.
Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., and Chung, T.C. 2001. Polypropylene/montmorillonite nanocomposites. Review of the synthetic route and materials properties. Chem. Mater., 13:3516-3523.
Marchant, D., and Jararaman, K. 2002. Strategies for optimizing polypropylene-clay nanocomposite structure. Ind. Eng. Chem. Res., asap article: A-G.
Maruyama, A., Ishihara, T., Kim, J.S., Kim, S.W., and Akaike, T. 1997. Nanoparticle DNA carrier with poly(L-lysine)graftd polysaccharide copolymer(D,L-lactic acid). Bioconjugate Chem., 8(5):735- 742.
Meltzer, Y.L. 1979. Water-Soluble Polymer. 319-338.
Ogata, N., Kawakage, S., and Ogihara, T. 1997. Structure and thermal/mechanical properties of poly(ethylene oxide)-clay mineral blends. Polymer, 38(20):5115-5118.
Pinnavaia, T.J. 1983. Intercalated clay catalysts. Science,220(4595):365-371.
Shelley, J.S., Mather, P.T., and DeVries, K.L. 2001. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer, 42:5849-5858.
Skoog, D.A., Holler, F.J. and Nieman, T.A. 1998. Principles of Instrumental Analysis, 5th ed, Saunders College Publishing.
Tamaki, R., and Chujo, Y. 1998. Synthesis of poly(vinyl alcohol)/ silica gel polymer hybrid by in-situ hydrolysis method. Appl. Organometal. Chem., 12:755-762.
Tjong, S.C., Meng, Y.Z., and Hay, A.S. 2002. Novel preparation and properties of polypropylene-vermiculite nanocomposites. Chem. Mater., 14:44-51.
Tyan, H.L., Liu, Y.C., and Wei, K.H. 1999. Enhancement of imidization of poly(amic acid) through forming poly(amic acid)/organoclay nanocomposites. Polymer, 40:4877-4886.
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O. 1993. Synthesis of nylon 6-clay hybrid. J. Mater. Res., 8(5):1179-1184.
Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P. 1999. Interlayer structure and molecular environment of alkylammonium layered silicates. J. Chem. Mater., 6:1017-1022.
Wang, K.H., Chung, I.J., Jang, M.C., Keum, J.K., and Song, H.H. 2002. Deformation behavior of polypropylene/silicate nanocomposites as studied by real-time wide-angle X-ray scattering. Macromolecules, 35:5529-5535.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top