跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳淑芬
研究生(外文):Sue-fan Wu
論文名稱:不同飼糧非澱粉多醣類來源對雛鵝生長及腸道性狀之影響
論文名稱(外文):Effects of Different Sources of Dietary Non-Starch Polysaccharides on the Growth Performance and Intestinal Characteristics in Goslings
指導教授:許振忠許振忠引用關係
指導教授(外文):Jenn-Chung Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:75
中文關鍵詞:非澱粉多醣類雛鵝腸道性
外文關鍵詞:Non-starch polysaccharidesGoslingIntestinal characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
以二個試驗探討飼糧中添加不同來源之非澱粉多醣類對雛鵝生長性能及腸道性狀之影響。試驗一,選取1日齡體重相近之雌白羅曼鵝(White Roman)120隻,逢機分成5個處理組,每處理組4重複,每重複6隻;鵝隻分別餵飼等蛋白質(粗蛋白質20.5 ﹪)、等熱能(代謝能2950 kcal/kg),分別由玉米、大麥糠、米糠、麩皮及果膠等5種原料提供9 ﹪NSP(non-starch polysaccharides)之飼糧;試驗期為3週(21日),採籠飼飼養(90 cm × 56 cm × 58 cm),飼料與飲水採任食。試驗二,5個處理組試驗飼糧分別含9%由玉米、大麥糠、米糠、麩皮及果膠來源之鹼萃取NSP,其餘之試驗設計與試驗一者相同。兩試驗鵝隻均於試驗開始及結束時,秤量個別體重,並每日記錄飼料消耗量;試驗結束時,犧牲鵝隻採取各部位腸道樣本進行相關性狀測定。試驗結果顯示,兩個試驗均以果膠處理組之飼糧黏度較其他各處理組之飼糧為高,且鵝隻腸道內容物之黏度亦以果膠處理組顯著較其他處理組者為高(P < 0.05)。鵝隻隻日增重、隻日採食量、飼料效率及三週齡平均體重,均以果膠處理組顯著較其他處理組者為差(P < 0.05)。在腸道性狀方面,兩試驗的腸道相對重量與相對長度均以果膠處理組顯著地較其他各處理組為高(P < 0.05);試驗一鵝隻盲腸內容物中短鏈脂肪酸(SCFA)含量,在各處理組間無顯著差異(P > 0.05),而試驗二鵝隻盲腸內容物中乙酸含量,以米糠處理組顯著較麩皮處理組低;丁酸含量則呈相反之現象。試驗一鵝隻腸道腺窩細胞增生速率,在各處理組間無顯著差異(P > 0.05),而試驗二在空腸及迴腸部分則以米糠處理組較麩皮處理組為高;試驗一空腸的細胞以果膠處理組最大,而細胞活性則以果膠處理組顯著最低(P < 0.05),其餘性狀無顯著差異。試驗二空、迴腸的細胞亦以果膠處理組顯著較其他各處理組大,但迴腸的細胞活性以果膠處理組顯著較其他處理組高,蛋白質合成效率則以果膠處理組顯著較其他各處理組低(P < 0.05)。

Abstract
The purpose of this study was to investigate the effects of different sources of dietary non-starch polysaccharides ( NSP ) on the growth performance and intestinal characteristics in goslings. This study includes two trials. In trial 1, one hundred and twenty 1 day old White Roman female goslings were selected and divided randomly into 5 groups. Each group contained 4 replicates with 6 birds and fed one of five isonitrogenous ( 20.5% crude protein ) and isocaloric ( 2950 kcal/kg ) diets that contained 9% natural dietary NSP from corn, barley hull, rice bran, wheat bran or pectin, respectively. Goslings were housed in wire cages ( 90 cm × 56 cm × 58 cm ). Feed and water were supplied ad libitum for a 3-wk experimental period. In trial 2, the experimental designs were same as those of trial 1 except 9% dietary NSP extracted from corn, barley hull, rice bran, wheat bran and pectin were supplemented to experimental diets, respectively. The body weight of goslings and daily feed consumption were recorded at the begin and end of both trials. At the end of both trials, the goslings were killed for measuring the intestinal characteristics. The results indicated that pectin treament diet had higher viscosity and significantly higher viscosity of intestinal digesta (P < 0.05) than the other treatment diets in both trials. However, the daily gain, daily feed consumption, feed efficiency and average body weight in pectin treatment group were significantly lower than those in the other treatments in both trials(P < 0.05). With respect to the intestinal weight and length, the relative weight and length of goslings fed with pectin treatment diet were significantly higher than those fed with the other treatments in both trials(P < 0.05). The percentage of SCFA in caecum were no significantly different among treatments in trial 1, and the percentage of acetic acid in rice bran treatment was significantly higher than that in wheat bran treatment in trial 2, but the percentage of butyric acid had a converse result. The crypt cell proliferation of intestinal mucosa were no significantly different among treatments in trial 1. However, the crypt cell proliferation of intestinal mucosa in rice bran treatment was significantly higher than that in wheat bran treatment in trial 2. In trial 1, except the significantly higher jejunal cell size and the significantly lower cell metabolic activity in pectin treatment, no significantly effects were discovered in DNA, RNA and protein contents. In trial 2, the jejunal and ileal cell sizes and cell metabolic activity in pectin treatment were significantly higher, but the protential rate of protein synthesis was significantly lower than those in the other treatments.

目 錄
壹、 中文摘要………………………………………………………. 1
貳、 前言……………………………………………………………. 3
參、 文獻檢討………………………………………………………. 5
一、飼糧纖維與非澱粉多醣類之定義………………….……. 5
二、非澱粉多醣類的特性……………………………….……. 6
(一)不可溶性非澱粉多醣類…………………………. 6
(二)可溶性非澱粉多醣類……………………………. 8
三、飼料簡介……………………………………………….…. 8
(一)玉米………….……………………………………. 8
(二)大麥糠…………………………………………….. 9
(三)米糠……………………………………………….. 9
(四)麩皮………………………………….…...……….. 10
(五)果膠………………………………………………. 11
1.來源及成分……………………………………. 11
2.結構……………………………………………. 12
3.可溶性…………………………………………. 13
4.膠化性…………………………………………. 14
肆、 材料與方法……………………………………………………. 17
一、試驗設計與方法…………………………………………. 17
二、測定項目與分析方法……………………………………. 23
(一)飼料之化學分析………………………………… 23
(二)NSP之萃取(鹼萃取法)…………………………. 23
(三)飼糧纖維含量之測定……………………………. 24
(四)in vitro法測定原料及飼糧粘度………………… 24
(五)腸道內容物黏度之測定………………………… 25
(六)腸道黏膜DNA、RNA及蛋白質之測定………. 25
(七)盲腸內容物短鍊脂肪酸之測定………………… 27
(八)腺窩細胞增生速率之測定……………………… 28
三、統計分析…………………………………………………. 29
伍、 結果與討論……………………………………………………. 30
一、飼料原料中飼糧纖維之含量及黏度……………………. 30
二、生長性狀………………………………………………….. 34
三、腸道性狀………………………………………………….. 39
1.腸道內容物黏度………………………………………. 39
2.腸道相對重量及長度…………………………………. 42
3.盲腸內容物中短鍊脂肪酸(SCFA)含量…………… 48
4.腺窩細胞增生速率糧粘度……………………………. 52
5.腸道黏膜組織之DNA、RNA與蛋白質……………… 58
陸、 結論……………………………………………………………. 64
柒、 參考文獻………………………………………………………. 65
捌、 英文摘要.................…………………………………………… 74

呂大衛,1993。日糧纖維來源不同對鵝之生長性狀與飼料中營養成分消化率之影響。碩士論文,國立中興大學。
沈信男,2003。飼糧非澱粉多醣類含量對雛鵝肝臟脂質蓄積及脂質合成相關酵素活性之影響。碩士論文,國立中興大學。
邱金賜,1988。病理切片技術與組織學染色法。國興出版社。新竹。
洪平,1986。飼料原料要覽。台灣養羊雜誌社。
孫玉玫,1999。脫殼大麥飼糧添加β-聚葡萄糖酶對肉雞生長性狀及消化道之影響。碩士論文,國立中興大學。
祝書賢,2002。非澱粉多醣類之醱酵與肉雞腸道生理之影響。 碩士論文,國立中興大學。
莊絢智,2001。非澱粉多醣類對肉雞腸道生理之影響。 碩士論文,國立中興大學。
飼料化驗分析技術手冊,1987。 p. 19~32,台灣省畜產試驗所,台南。
Almirall, M., M. Francesch, A. M. Perez-Vendrell, J. Brufau, and E. Estere-Garcia. 1995. The difference in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr. 125: 947-955.
Annison, G., P. J. Moughan, and D. V. Thomas. 1995. Nutritive activity of soluble rice bran arabinoxylans in broiler diets. Br. Poultry Sci. 36: 479-488.
Axelos, M. A. V., and J. F. Thibault. 1991. The chemistry of low methoxyl pectin, in The Chemistry and Technology of Pectin, Walter, R. H., Ed., Academic Press, New York, 109.
Bailey, J. 1991. Grape fruit pectin reduces cholesterol, Calif. Grow., 15,15.
Bedford, M. R., and H. L. Classen. 1993. Effects of short-chain fatty acids on human rectosigmoid mucosal coloncyte border enzymes. Metabolism. 47: 133-134.
Baier, M., R. Goldberg, A. M. Catesson, M. Liberman, N. Michon, and C. Herve-Penhoat. 1994. Pectin changes in samples containing poplar cambium and inner bark in relation to the seasonal cycle. Planta. 193, 446.
Brake, N. C., and O. R., Fennema. 1993. Edible coatings to inhibit lipid migration in a confectionery product. J. Food Sci. 58:1422.
Brown, R. C., J. Kelleher, and M. S. Losowsky. 1979 The effect of pectin on the structure and function of the rat small intestine. Br. J. Nutr. 42:357-365.
Brunsgaard, G. and B. O. Eggum. 1995. Small intestinal tissue structure and proliferation as influenced by adaptation period and indigestible polysaccharides. Comp. Biochem. Physiol. 112:365-377.
Chang, K. C., N. Khurandhar, X. You, and A. Miyamoto. 1994. Cultivar/location and processing methods affect yield and quality of sunflower pectin. J. Food Sci. 59, 602.
Choct, M., and G. Annison. 1992. Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci. 33: 821-834.
Cui, W., P. J. Wood, J. Weisz, and M. U. Beer. 1999. Nonstarch polysaccharides from preprocessed wheat bran: carbohydrate analysis and novel rheological properties. Cereal Chem. 76 (1): 129-133.
Cumming, J. H., E. W. Pomare, W. J. Branch, C. P. E. Naylor, and G. T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 28:1221-1227.
Dahle, H. K., E. Eikum, and K. N. Lilleeng. 1992. Glucanases in feed products. Norsk Landbruksforsking 6: 1-5 (cited by Iji, P. A. 1999. The impact of cereal non-starch polysaccharides on intestinal development and function in broiler chickens. World's Poult. Sci. J. 55(4):375-387)
Doner, L.W., D. B. Johnston, and V. Singh. 2001. Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. Journal of Agricultural & Food Chemistry. 49(3): 1266-1269.
Evers, A.D. A.B.Blakeney, and L. O'Brien. 1999. Cereal structure and composition. Australian Journal of Agricultural Research. 50 (5): 629-650.
Fincher, G. B. and B. A. Stone. 1986. Cell walls and their components in cereal grain technology, in: Pomerasz, Y. (Ed.) Advances in Cereal Science and Technology. 8: 207-295. (Minnesota, AACC).
Glickman, M. 1969. Gum Technology in the Food Industry, Academic Press, New York.
Goldspink, D. F., S. E. M. Lewis, and F. J. Kelly. 1984. Protein synthesis during the development growth of the small and large intestine of the rat. Biochem. J. 217:527-534.
Grigsby, K. N.,M. S. Kerley, J. A. Paterson, and J. C. Weigel. 1992. Site and extent of nutrient digestion by steers fed a low —quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 70(6):1941-1949.
Hesselman, S. and P. Aman. 1986. The effect of β-glcanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low or high viscosity. Anim. Feed Sci. Technol. 15: 83-93.
Hespell, R. B. 1998. Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J. Agric. Food Chem. 46: 2615-2619.
Iji, P. A. 1999. The impact of cereal non-starch polysaccharides on intestinal development and function in broiler chickens. World’s Poult. Sci. J. 55:375-387.
Iji, P. A., A. A. Saki, and D. R. Tivey. 2001. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim. Feed Sci. Technol. 89:175-188.
Jarvis, M. C. 1984. Structure and properties of pectin gels in Plant cell wall. Plant Cell Environ. 7, 153.
Johnson, I. T., J. M. Gee, and R. R. Mahoney. 1986. Gastrointestinal adaption in response to soluble non-available polysacchrides in the rat. Br. J. Nutr. 55: 497-505.
Jorgensen, H. X. Q. Zhao, and B. O. Eggum. 1997. The energy value of short-chain fatty acids infused into the caecum of pigs. Br. J. Nutr. 77:745-756.
Karr, A. L. 1976. Cell wall bigenesis, in Plant Biochemistry, Bonner, J. and Varner, J. E., Eds., Academic Press, New York, 405.
Kay, R. M., 1982. Dietary fiber. J. Lipid Res. 23:221~242.
Landis, W., H. K. Chau, M. L. Fishman, and K. B. Hicks. 1998. An improved process for isolation of corn fiber gum. Cereal Chem. 75(4):408-411.
Lau, J. M., M. McMeil, A. G. Darvill, and P. Albersheim. 1985. structure of backbone of rhamnogalacturonan. I. A pectic polysaccharide in the primary cell walls of plants. Carbohydr. Res. 137, 111.
Lee, S. C., L. Porsky, and J. W. De Vries. 1992. Determination of total, soluble and insoluble dietary fiber in foods-enzymatic gravimetric method, MES-TRIS buffer: collaborative study. J. APAC. Int. 75(3): 395-416.
Lee, C. J., R. D. Horsley, F. A. Manthey, and P. B. Schwarz. 1997. Comparisons of beta-glucan content of barley and oat. Cereal Chem. 74(5): 571-575.
Lewin, B.. 2000. Gene VII, , OXFORD USA, Ch27 cell cycle and gorwth regulation, p.835-74.
Lotzkar, J., T. H. Schultz, H. S. Owens, and W. D. Maclay. 1946. Effects of salts on the viscosity of pectinic acid solutions. J. Phys. Chem. 50: 200.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin-phenol; reagent. J. Biol. Chem. 193: 265-275.
May, C. D. 1990. Industrial pectins: sources, production and applications. Carbohydr. Polym. 12: 79.
Miyamoto, A., and K. C. Chang. 1992. Extraction and physico-chemical characterization of pectin from sunflower, head residue. Can. Inst. Food Techol. J. 57: 1439.
Morris, E. R., and R. R. Marquared. 1981.Chain flexibility of polysaccharides and glycoprotein form viscosity measurements. Techniques in Carbohydrate Metabolism B310:1-46.
Palo, P. E., J. L. Sell, F. J. Piquer, M. F. Soto-Salanova., and L. Vilaseca. 1995. Effect of early nutrient restriction on broiler chickens: 1. Performance and development of the gastrointestinal tract. Poultry. Sci. 74:88-101.
Rao, A. V., N. Shiwnarain, M. Koo, and D. J. A. Jenkins. 1994. Effect of fiber-rich foods on the composition of intestinal microflora. Nutr. Res. 14:523-535.
Raymond, T. L., W. E. Connor, D. S. Lin, S. Warner, M. M. Fry, and S. L. Connor. 1977. The interaction of dietary fibres and cholesterol upon the plasma lipids and lipoproteins, sterol, balance and bowel function in human subjects. J. Clin, Incest. 60, 1429.
Roberfroid, M., and M. A. Eastwood. 1981. An examination of factors which may affect the water holding capacity of dietary fiber. Br. J. Nutr. 33:83-88.
Roberfroid, M.. 1993. Dietary fiber, insulin and oligofrutose:a review comparing their physiological effects. Crit. Rev. Food Sci. and Nutr. 33:103~148.
Rombouts, F. M., and J. F. Thibault. 1986.Ferulated pectin substances from sugar beet pulp. Carbohydr. Res. 157: 177.
Sakata, T.. 1987. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br. J. Nutr. 58: 95-1035.
SAS.1985. User′s Guide: Statistics. SAS Inst.Inc., Cary, NC.
Schneeman, B. O.. 1987. Soluble vs insoluble fiber different physiological respose. Food Technol. 41:81~82.
Schneeman, B. O.. 1989. Dietary fiber. Food Technol. 43:133~139.
Simpson, B. K., K. B. Egyankor, and A. M. Martin. 1984. Extraction, purification and determination of pectin in tropical fruits. J. Food Process Preserv. 2,63.
Siri, S., H. Tobioka, and I. Tasaki. 1992. Effects of dietary fibers on growth performance, development of internal organs, protein and energy utilization, and lipid content of growing chicks. Jap. Poult. Sci. 29:106-114.
Smits, C.H. M., and G. Annison. 1996. Non-starch plant polysaccharides in broiler nutrition- towards a physiologically valid approach to their determination. World’s Poult. Sci. J. 52:203-221.
Thakur, B. R., R. K. Singh, and A. K. Handa. 1997. Chemistry and use of pectin-a review. Critical Reviews in Food Science and Nutr. 37(1):47-73.
Toppong, D. L., and Illman, R. J., 1986. Medical Journal of Australia 144, 307-309.
Towel, G. A., and O. Christensen. 1959. Pectin, in industrial gum-Polysaccharides and their derivatives, Whistler, R. L. and BeMiller, J. N., Eds., Academic Press, New York. 377.
Trowell, H., D. A. T. Southgate, T. M. S. Wolever, A. R., Leeds, M. A. Gassull, and D. J. A. Jenkins. 1976. Dietary fibre redefined. Lancet 1:967~969.
Trowell, H.. 1974. Definitions of fiber. Lancet 1:503~505.
Uni, Z., S. Ganot, and D. Sklan. 1998. Posthatch development of mucosal function in the broiler small intestine. Poultry Sci. 77:75-82.
Uni, Z., Y. Noy, and D. Sklan. 1995. Development of the small intestine in heavy and light strain chicks before and after hatching . Br. Poult. Sci. 36:63-71.
Vahouny, G. V.. 1982. Dietaryfiber, lipid metabolism and atherosclerosis. Fed. Proc. 41:2801~2806.
Van der Klis, J. D., M. W. A. Verstegen, and A. Van voorst. 1993. Effect of a soluble polysaccharide (carboxy methylcellulose) on the absorption of minerals from the gastrointestinal tract of broilers. Br. Poult. Sci. 34: 985-997.
Walkenstrom, P., S. Kidman, A. M. Hermansson, P. B. Rasmussen, and L. Hoegh. 2003. Microstructure and rheological behaviour of alginate/ pectin mixed gels. Food Hydrocolloids 17:593-603.
Walkinshaw, M. D., and S. Arnott. 1981. Conformations and inter actions of pectin acid and calcium pectate gels. J. Mol. Biol. 53, 1075.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top