跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳麗秋
研究生(外文):Li-chiu Chen
論文名稱:利用高效能蛋白技術鑑定惡性疾病之血清腫瘤標誌
論文名稱(外文):Identification of serum tumor markers for malignant disease using high-throughput proteomic technologies
指導教授:鄭恩加
指導教授(外文):Ann-joy Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:高效能蛋白技術血清腫瘤標誌惡性疾病
外文關鍵詞:high-throughput proteomic technologyserum tumor markermalignant disease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:惡性腫瘤在過去幾十年來一直是台灣死亡排行榜上的第一位。目前,仍未有血清標誌提供診斷口腔癌以及鼻咽癌,也未有高靈敏性及專一性的血清標誌提供診斷乳癌、肺癌、及攝護線癌。
方法:利用磁珠具有不同親和力的磁珠作純化及MALDI-TOF質譜儀作分析,我們針對乳癌、肺癌、攝護腺癌、口腔癌、及鼻咽癌篩選鑑定了具潛力的血清腫瘤標誌。每一種癌症統合的蛋白圖譜先與正常檢體的統合圖譜做比對,然後再利用統計軟體分析其間的差異。
結果:因為銅磁珠可以呈現最多正常及癌症檢體間的差異,所以初步利用銅磁珠作蛋白圖譜分析。除了乳癌,在五種分析的癌症中,我們找到了幾個具有高靈敏性(>80%)及高專一性(>90%)的血清腫瘤標誌,分別是4個分子量分別為2878±5、3809±5、4975±5、和 8610±5的肺癌標誌,2個分子量分別為1892±5和2022±5的攝護腺癌標誌,1個分子量為2664±5的口腔癌標誌,及1個分子量為2020±5的鼻咽癌標誌。若結合2個鼻煙癌標誌作分析,偵測到的靈敏性將大大的提高。最後,兩個最靈敏、最專一、分子量分別是2020 and 2658的腫瘤標誌被鑑定出,他們分別是補體C3前驅物(攝護腺癌及鼻煙癌標誌)及alpha-fibrinogen (口腔癌標誌)。
結論:高效能蛋白技術可以運用來發現新的且較好的腫瘤標誌。利用此技術,我們找到了4個肺癌、2個攝護腺癌、1個口腔癌、及一個鼻咽癌的腫瘤標誌。這些高靈敏性及高專一性的腫瘤標誌非常具有潛力可以作為惡性疾病的診斷工具。
Background: Malignant tumors are at the top leading cause of death in Taiwan in the past decades. Currently, there is no serum marker for detecting oral or nasopharyngeal cancers (ORC or NPC), neither available serum marker with high sensitivity and specificity for breast, lung, and prostate cancers (BC, LC, and PC).
Methods: Affinity purification with magnet beads and MALDI-TOF mass spectrometry analysis were used to screen and identify potential serum tumor markers for BC, LC, PC, ORC, and NPC. Compiled protein profile of each cancer group was compared to normal samples, and the differential spectra were statistically analyzed using bioinformatic softwares.
Results: Since Cu bead can discriminate most differential spectra between normal and tumor group, it was used for protein profiling. Among the five tested malignant diseases except breast cancer, several markers with high sensitivity (>80%) and specificity (>90%) were found. They are 4 LC-specific markers with molecular weight of 2878±5, 3809±5, 4975±5, and 8610±5; 2 PC-specific markers with molecular weight of 1892±5 and 2022±5; 1 ORC-specific marker with molecular weight of 2664±5; and 1 NPC-specific marker with molecular weight of 2020±5. After combination of two NPC-specific markers, the detecting sensitivity was greatly increased (94%0. Finally, two most sensitive and specific markers were identified with a PC and NPC marker (2020 Da) and an ORC marker (2658 Da). They are complement C3 precursor and alpha fibrinogen, respectively.
Conclusion: High-throughput proteomic approach could greatly facilitate the discovery of novel and better serum markers. 4 LC-specific markers, 2 PC-specific markers, 1 ORC-specific marker and 1 NPC-specific marker were found. The high specificity and sensitivity achieved by the use of these tumor-specific markers show great potential for the detection of the malignant diseases.
Contents
Introduction
A. Malignant disease and serum tumor markers………………………1
B. High-throughput proteomic technologies…………………………..1
1. Classical approach……………………………………………….….2
2. Surface-enhanced laser/desorption time-of-flight (SELDI-TOF) approach…………………………………………………………….2
3. Affinity-beads purification and MALDI-TOF MS approach……….3
Materials and Methods
Study populations and blood sample collection……………………….5
Proteomic analysis……………………………………………………..5
Statistical data analysis………………………………………………...6
Identification of protein markers………………………………………7
Results
A. Sample preparation and optimization………………………………8
1. Unnecessary removal of albumin…………………………………...8
2. Sufficient beads capacity……………………………………………8
3. Titration of the fractionated sera samples…………………………...8
B. Beads selection……………………………………………………..9
1. Hydrophobic series: C3, C8, C18…………………………………...9
2. Metal series: Cu, Fe………………………………………………..10
3. Cation beads……………………………………………………….10
C. Evaluation of protein profiling using Cu beads…………………...11
1. Enough detection range of 10 kDa……………………………...…11
2. High reproducibility of Cu-beads-purification and MALDI-TOF MS analysis…………………………………………………………….11
D. Search for specific tumor marker…………………………………12
1. Breast cancer (BC)…………………………………………………12
2. Lung cancer (LC)…………………………………………………..12
3. Prostate cancer (PC)……………………………………………….13
4. Oral cancer (ORC)…………………………………………………14
5. Nasopharyngeal cancer (NPC)…………………………………….15
E. Identification of the tumor markers……………………………….17
Discussion………………………………………………………………18
References………………………………………………………………22
Tables
Table 1 Top ten leading cause of death in Taiwan in 2003……………26
Table 2 Top fifteen leading cancers in Taiwan in 2003 and the
serum markers currently used in clinic now………………….27
Table 3 Reproducibility of mass spectra profiled by Cu-beads……….28
Table 4 Patient characteristics………………………………………...29
Table 5 Determination of the sensitivity and specificity for the
four LC-specific differential markers………………………...30
Table 6 Determination of the sensitivity and specificity for the
two PC-specific differential markers…………………………31
Table 7 Determination of the sensitivity and specificity for the
six ORC-specific differential markers………………………..32
Table 8 Determination of the sensitivity and specificity for the
twelve NPC-specific differential markers……………………33
Table 9 Statistical analysis of the combined markers in detection
of NPC………………………………………………………..34
Table10 MALDI-TOF mass spectra and database matching for
protein identification…………………………………………35
Figures
Figure 1 General steps of the used method in this study…………….36
Figure 2 Unnecessary removal of albumin for mass spectrometry….37
Figure 3 Sufficient beads capacity…………………………………..38
Figure 4 Sample dilution…………………………………………….39
Figure 5 Comparison of the protein profiles between C3, C8, and
C18 beads………………………………………………….40
Figure 6 Both Cu and Cation beads suitable for profiling…………..41
Figure 7 Sufficient detection range of 10 kDa………………………42
Figure 8 Reproducibility of mass spectra profiled by Cu-beads…….43
Figure 9 Search for specific tumor marker of breast cancer…………44
Figure 10 Search for specific tumor marker of lung cancer (LC)…….45
Figure 11 Distribution of LC-specific differential markers…………..46
Figure 12 Search for specific tumor marker of prostate cancer (PC)…47
Figure 13 Distribution of PC-specific differential markers…………...48
Figure 14 Search for specific tumor marker of oral cancer…………...49
Figure 15 Distribution of ORC-specific differential markers………...50
Figure 16 Search for specific tumor marker of nasopharyngeal cancer
(NPC)………………………………………………………51
Figure 17 Distribution of NPC-specific differential markers…………52
Figure 18 Cu-bead fractionated proteins were further purified by C8 beads for protein identification…………………………….53
Figure 19 Identification of proteins by TOF/TOF analysis…………...54
1. Gadducci, A., S. Cosio, A. Carpi, et al., Serum tumor markers in the management of ovarian, endometrial and cervical cancer. Biomed Pharmacother, 2004. 58(1): p. 24-38.
2. Srinivas, P.R., B.S. Kramer, and S. Srivastava, Trends in biomarker research for cancer detection. Lancet Oncol, 2001. 2(11): p. 698-704.
3. Gorgone, S., A. Alleruzzo, A.G. Rizzo, et al., Tumor markers in colorectal cancer. Minerva Chir, 1992. 47(15-16): p. 1249-52.
4. Tessera, G., S. Dall''Acqua, A. De Bernardi, et al., Tumor markers in colorectal neoplasm pathology: our experience of the diagnostic and prognostic importance of CEA antigen. Chir Ital, 1988. 40(6): p. 377-87.
5. Soresi, M., C. Magliarisi, P. Campagna, et al., Usefulness of alpha-fetoprotein in the diagnosis of hepatocellular carcinoma. Anticancer Res, 2003. 23(2C): p. 1747-53.
6. Arslan, N., M. Serdar, S. Deveci, et al., Use of CA15-3, CEA and prolactin for the primary diagnosis of breast cancer and correlation with the prognostic factors at the time of initial diagnosis. Ann Nucl Med, 2000. 14(5): p. 395-9.
7. Brockmann, J.G., H. St Nottberg, B. Glodny, et al., CYFRA 21-1 serum analysis in patients with esophageal cancer. Clin Cancer Res, 2000. 6(11): p. 4249-52.
8. Chen, Z., Z. Fan, and J. Yang, Immunoradiometric assay of tumor marker CA15-3 and its clinical application. Zhonghua Zhong Liu Za Zhi, 1998. 20(2): p. 125-8.
9. Karnak, D., G. Ulubay, O. Kayacan, et al., Evaluation of Cyfra 21-1: a potential tumor marker for non-small cell lung carcinomas. Lung, 2001. 179(1): p. 57-65.
10. Santander, C., I. Jimenez, E. Martin, et al., Is the carbohydrate antigen Ca 19.9 useful in the diagnosis of pancreatic carcinoma? Rev Esp Enferm Dig, 1994. 86(5): p. 819-21.
11. Szymendera, J.J., A.W. Szawlowski, M.P. Nowacki, et al., Serum levels of carcinoembryonic antigen, gastrointestinal cancer-associated antigen and alphafetoprotein in staging and management of patients with advanced carcinoma of the stomach. Int J Biol Markers, 1987. 2(1): p. 19-24.
12. Wongkham, S., J.K. Sheehan, C. Boonla, et al., Serum MUC5AC mucin as a potential marker for cholangiocarcinoma. Cancer Lett, 2003. 195(1): p. 93-9.
13. Banks, R.E., M.J. Dunn, D.F. Hochstrasser, et al., Proteomics: new perspectives, new biomedical opportunities. Lancet, 2000. 356(9243): p. 1749-56.
14. Meyerson, M., W.A. Franklin, and M.J. Kelley, Molecular classification and molecular genetics of human lung cancers. Semin Oncol, 2004. 31(1 Suppl 1): p. 4-19.
15. Seliger, B. and R. Kellner, Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics, 2002. 2(12): p. 1641-51.
16. Bernard, K., E. Litman, J.L. Fitzpatrick, et al., Functional proteomic analysis of melanoma progression. Cancer Res, 2003. 63(20): p. 6716-25.
17. He, Q.Y., J. Chen, H.F. Kung, et al., Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics, 2004. 4(1): p. 271-8.
18. Hu, W., W. Wu, C.F. Verschraegen, et al., Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics, 2003. 3(10): p. 1904-11.
19. Somiari, R.I., A. Sullivan, S. Russell, et al., High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics, 2003. 3(10): p. 1863-73.
20. Steel, L.F., D. Shumpert, M. Trotter, et al., A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics, 2003. 3(5): p. 601-9.
21. Li, J., Z. Zhang, J. Rosenzweig, et al., Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem, 2002. 48(8): p. 1296-304.
22. Chapman, K., The ProteinChip Biomarker System from Ciphergen Biosystems: a novel proteomics platform for rapid biomarker discovery and validation. Biochem Soc Trans, 2002. 30(2): p. 82-7.
23. Merchant, M. and S.R. Weinberger, Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis, 2000. 21(6): p. 1164-77.
24. Conrads, T.P., M. Zhou, E.F. Petricoin, 3rd, et al., Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn, 2003. 3(4): p. 411-20.
25. Issaq, H.J., T.D. Veenstra, T.P. Conrads, et al., The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun, 2002. 292(3): p. 587-92.
26. Xiao, Z., B.L. Adam, L.H. Cazares, et al., Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res, 2001. 61(16): p. 6029-33.
27. Shiwa, M., Y. Nishimura, R. Wakatabe, et al., Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun, 2003. 309(1): p. 18-25.
28. Wellmann, A., V. Wollscheid, H. Lu, et al., Analysis of microdissected prostate tissue with ProteinChip arrays--a way to new insights into carcinogenesis and to diagnostic tools. Int J Mol Med, 2002. 9(4): p. 341-7.
29. Zheng, Y., Y. Xu, B. Ye, et al., Prostate carcinoma tissue proteomics for biomarker discovery. Cancer, 2003. 98(12): p. 2576-82.
30. Kozak, K.R., M.W. Amneus, S.M. Pusey, et al., Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12343-8.
31. Lewczuk, P., H. Esselmann, T.W. Groemer, et al., Amyloid beta peptides in cerebrospinal fluid as profiled with surface enhanced laser desorption/ionization time-of-flight mass spectrometry: evidence of novel biomarkers in Alzheimer''s disease. Biol Psychiatry, 2004. 55(5): p. 524-30.
32. Li, J., N. White, Z. Zhang, et al., Detection of prostate cancer using serum proteomics pattern in a histologically confirmed population. J Urol, 2004. 171(5): p. 1782-7.
33. Petricoin, E.F., A.M. Ardekani, B.A. Hitt, et al., Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002. 359(9306): p. 572-7.
34. Rogers, M.A., P. Clarke, J. Noble, et al., Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res, 2003. 63(20): p. 6971-83.
35. Amayo, A. and W. Obara, Serum prostate specific antigen levels in men with benign prostatic hyperplasia and cancer of prostate. East Afr Med J, 2004. 81(1): p. 22-6.
36. Debniak, J., M. Stukan, M. Pietrzak-Stukan, et al., [Cancer antigen CA 125 in ovarian cancer]. Ginekol Pol, 2003. 74(9): p. 701-9.
37. Tammela, J. and S. Lele, New modalities in detection of recurrent ovarian cancer. Curr Opin Obstet Gynecol, 2004. 16(1): p. 5-9.
38. Salmon, J.E., G. Girardi, and V.M. Holers, Complement activation as a mediator of antiphospholipid antibody induced pregnancy loss and thrombosis. Ann Rheum Dis, 2002. 61 Suppl 2: p. ii46-50.
39. Sahu, A. and J.D. Lambris, Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev, 2001. 180: p. 35-48.
40. Henschen-Edman, A.H., Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci, 2001. 936: p. 580-93.
41. Redman, C.M. and H. Xia, Fibrinogen biosynthesis. Assembly, intracellular degradation, and association with lipid synthesis and secretion. Ann N Y Acad Sci, 2001. 936: p. 480-95.
42. Abbasciano, V., D. Tassinari, S. Sartori, et al., Usefulness of coagulation markers in staging of gastric cancer. Cancer Detect Prev, 1995. 19(4): p. 331-6.
43. Liotta, L.A., M. Ferrari, and E. Petricoin, Clinical proteomics: written in blood. Nature, 2003. 425(6961): p. 905.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top