跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴筱銜
研究生(外文):TAI, HSIAO-HSIEN
論文名稱:肝臟缺陷之基因組規模代謝網絡的代謝重編程
論文名稱(外文):Metabolic Reprogramming of the Genome-scale Metabolic Network of Liver Deficient
指導教授:王逢盛
指導教授(外文):WANG, FENG-SHENG
口試委員:周宜雄黃奇英張牧新黃光策
口試委員(外文):CHOU, I-HSIUNGHUANG, CHI-YINGCHANG, MU-HSINHUANG, KUANG-TSE
口試日期:2018-06-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:118
中文關鍵詞:Recon2.2 模型人類蛋白質圖譜網站(HPA)肝癌致癌基因
外文關鍵詞:Recon2.2 modelHuman Protein Atlas Website (HPA)Liver CancerOncogenes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本研究以肝臟為主軸,利用正常的細胞和癌細胞之間顯著的通量分佈代謝差異,找到在癌化情況下的生物標誌物或致癌基因,基於人類代謝網路模型Recon2.2,並透過人類蛋白質圖譜網站(The Human Protein Atlas,HPA )中具有組織特異性的數據做應用,再搭配Virtual Metabolic Human (VMH)網站中所提供的營養物質做為模型攝取的依據,經由成本最佳化反應依賴性評估(Cost Optimization Reaction Dependency Assessment,CORDA)的算法,重建出肝臟的健康與癌症的模型,透過實驗室所開發的Nested Hybrid Differential Evolution (NHDE),配合突變通量平衡分析(Mutant Flux Balance Analysis,mFBA)並以瓦氏效應(Warburg Effect)的現象做為研究的指標,模擬肝癌代謝重編程的情況,而找到的致癌基因,大多指向脂肪代謝的相關基因酵素,它們將會誘導體內代謝網路出現紊亂,促進腫瘤的生長與癌症的發展,並預測生物標誌物,做為肝癌在未來更進一步的研究以及給予醫療上一個明確的方向。
This study used the liver as the main axis to exploit the significant flux distribution differences between normal cells and cancer cells to find biomarkers or oncogenes under the case of cancer. Based on the human metabolic network model Recon2.2, and use tissue-specific data from the Human Protein Atlas (HPA), the Virtual Metabolic Human (VMH) to provide the nutrients and Cost Optimization Reaction Dependency Assessment (CORDA) algorithm to generate the model reconstructs of liver health and cancer. Through the use of the Nested Hybrid Differential Evolution (NHDE) and Mutant Flux Balance Analysis (mFBA) developed in the laboratory, the phenomenon of the Warburg Effect as indicators of research to simulate the reprogramming of liver cancer metabolism. Most of the found oncogenes are related to the enzyme enzymes involved in fat metabolism. They will induce human body metabolic network disorders to promote the growth of tumors and the development of cancer. The studies of liver cancer, predict biomarkers, give medical care a clear direction in the further .
致謝
摘要
Abstract
目錄
表目錄
圖目錄
第一章緒論
1.1前言
1.2文獻回顧
1.3研究動機
1.4組織章節
第二章 代謝生物資料庫及工具簡介
2.1生物資料庫
2.1.1 National Center for Biotechnology Information (NCBI)
2.1.2 Expert Protein Analysis System (ExPASy)
2.1.3 Kyoto Encyclopedia of Genes and Genomes (KEGG)
2.1.4 GeneCards : The Human Gene Database
2.1.5 The Human Protein Atlas (HPA)
2.1.6 Virtual Metabolic Human (VMH)
2.2 工具簡介
2.2.1 MATrix LABoratory (MATLAB)
2.2.2 Systems Biology Program (SBP)
2.2.3 General Algebraic Modeling System (GAMS)
第三章 代謝網路模型介紹與方法分析
3.1前言
3.2代謝網路模型的建構
3.2.1人類基因體規模之代謝網路模型(Recon 2.2)
3.2.2肝臟組織特異性模型
3.2.2.1健康之肝臟組織特異性模型(HT-Liver Model)
3.2.2.2癌症之肝臟組織特異性模型(CA-Liver Model)
3.2.3在生物體代謝途徑中重要物質和反應的加入
3.2.4 CORDA (Cost Optimization Reaction Dependency Assessment)
3.3生理條件設定(Target setting)
3.4計算方法的介紹
3.4.1將問題以數學模式做描述
3.4.2通量平衡分析(Flux Balance Analysis,FBA)
3.4.3突變通量平衡分析(Mutant Flux Balance Analysis,mFBA)
3.4.4基質最小成分分析(Minimum Uptake Requirement)
3.4.5 Nested Hybrid Differential Evolution (NHDE)
第四章 結果與討論
4.1前言
4.2 Warburg Effect、致癌性及LC/MS相似度的介紹
4.3與肝癌相關的基因酵素
4.3.1甲羥戊酸途徑(mevalonate pathway)之單基因失調
4.3.2甲羥戊酸途徑(mevalonate pathway)之雙基因失調
4.3.2.1 HMGCR基因搭配HMGCS2之雙基因失調
4.3.2.2 HMGCR基因搭配DDC/HDC之雙基因失調
4.3.3 膽鹼代謝(Choline metabolism)之基因失調
4.3.3.1 CHDH搭配BHMT之雙基因失調
4.3.3.2 BHMT基因搭配ACAC基因之雙基因失調
4.3.3.3 CHDH與BHMT搭配SPHK之三基因失調
4.3.4 ELOVL脂肪酸延長酶與肝癌的關係
4.4與其他癌症相關的基因酵素
4.4.1 AMACR基因酵素與癌症的關係
4.4.2 SOAT1和SOAT2與癌症的關係
4.5未來可能的致癌基因
第五章 結論與未來展望
5.1結論
5.2未來展望
參考文獻


[1]L. Hood, "A personal journey of discovery: developing technology and changing biology," Annu. Rev. Anal. Chem., vol. 1, pp. 1-43, 2008.

[2]M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist, et al., "Phases of biomarker development for early detection of cancer," Journal of the National Cancer Institute, vol. 93, pp. 1054-1061, 2001.

[3]I. Thiele, N. Swainston, R. M. Fleming, A. Hoppe, S. Sahoo, M. K. Aurich, et al., "A community-driven global reconstruction of human metabolism," Nature biotechnology, vol. 31, pp. 419-425, 2013.

[4]N. C. Duarte, S. A. Becker, N. Jamshidi, I. Thiele, M. L. Mo, T. D. Vo, et al., "Global reconstruction of the human metabolic network based on genomic and bibliomic data," Proceedings of the National Academy of Sciences, vol. 104, pp. 1777-1782, 2007.

[5]N. Swainston, K. Smallbone, H. Hefzi, P. D. Dobson, J. Brewer, M. Hanscho, et al., "Recon 2.2: from reconstruction to model of human metabolism," Metabolomics, vol. 12, pp. 1-7, 2016.

[6]F. Hirschhaeuser, U. G. Sattler, and W. Mueller-Klieser, "Lactate: a metabolic key player in cancer," Cancer research, vol. 71, pp. 6921-6925, 2011.

[7]W. H. Koppenol, P. L. Bounds, and C. V. Dang, "Otto Warburg's contributions to current concepts of cancer metabolism," Nature Reviews Cancer, vol. 11, pp. 325-337, 2011.

[8]J. Fan, J. J. Kamphorst, R. Mathew, M. K. Chung, E. White, T. Shlomi, et al., "Glutamine‐driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia," Molecular systems biology, vol. 9, pp. 1-11, 2013.

[9]F. Pontén, K. Jirström, and M. Uhlen, "The Human Protein Atlas—a tool for pathology," The Journal of pathology, vol. 216, pp. 387-393, 2008.

[10]A. Schultz and A. A. Qutub, "Reconstruction of tissue-specific metabolic networks using CORDA," PLoS computational biology, vol. 12, pp. 1-33, 2016.

[11]C. V. Dang, "Links between metabolism and cancer," Genes & development, vol. 26, pp. 877-890, 2012.

[12]J. D. Orth, I. Thiele, and B. Ø. Palsson, "What is flux balance analysis?," Nature biotechnology, vol. 28, pp. 1-7, 2010.

[13]K. D. Pruitt and D. R. Maglott, "RefSeq and LocusLink: NCBI gene-centered resources," Nucleic acids research, vol. 29, pp. 137-140, 2001.

[14]E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, "ExPASy: the proteomics server for in-depth protein knowledge and analysis," Nucleic acids research, vol. 31, pp. 3784-3788, 2003.

[15]M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, "KEGG for integration and interpretation of large-scale molecular data sets," Nucleic acids research, vol. 40, pp. 109-114, 2011.

[16]M. Rebhan, V. Chalifa-Caspi, J. Prilusky, and D. Lancet, "GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support," Bioinformatics (Oxford, England), vol. 14, pp. 656-664, 1998.

[17]M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, et al., "Tissue-based map of the human proteome," Science, vol. 347, pp. 1-11, 2015.

[18]A. Noronha, A. D. Daníelsdóttir, P. Gawron, F. Jóhannsson, S. Jónsdóttir, S. Jarlsson, et al., "ReconMap: an interactive visualization of human metabolism," Bioinformatics, vol. 33, pp. 605-607, 2016.

[19]M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, et al., "The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models," Bioinformatics, vol. 19, pp. 524-531, 2003.

[20]T. F. Rutherford, "Applied general equilibrium modeling with MPSGE as a GAMS subsystem: An overview of the modeling framework and syntax," Computational economics, vol. 14, pp. 1-46, 1999.

[21]N. M. Zacharias, C. McCullough, S. Shanmugavelandy, J. Lee, Y. Lee, P. Dutta, et al., "Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer," Scientific reports, vol. 7, pp. 1-11, 2017.

[22]T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan, and E. Ruppin, "Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect," PLoS computational biology, vol. 7, pp. 1-9, 2011.

[23]C. M. Croce, "Causes and consequences of microRNA dysregulation in cancer," Nature reviews genetics, vol. 10, pp. 1-19, 2009.

[24]A. Budhu, S. Roessler, X. Zhao, Z. Yu, M. Forgues, J. Ji, et al., "Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes," Gastroenterology, vol. 144, pp. 1066-1075. e1, 2013.

[25]M. M. Barron, K. M. Shaw, K. M. Bullard, M. K. Ali, and M. J. Magee, "Diabetes mellitus is associated with increased prevalence of latent tuberculosis infection: Results from the National Health and Nutrition Examination Survey," bioRxiv, pp. 1-32, 2017.

[26]T. Lang, "Reference intervals: the GB data," Clinical biochemistry, vol. 44, pp. 1-3, 2011.

[27]P. F. Suthers, M. S. Dasika, V. S. Kumar, G. Denisov, J. I. Glass, and C. D. Maranas, "A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189," PLoS Computational Biology, vol. 5, pp. 1-14, 2009.

[28]K.-C. Hsu and F.-S. Wang, "Model-based optimization approaches for precision medicine: A case study in presynaptic dopamine overactivity," PloS one, vol. 12, pp. 1-19, 2017.

[29]C. Enríquez-Cortina, O. Bello-Monroy, P. Rosales-Cruz, V. Souza, R. U. Miranda, R. Toledo-Pérez, et al., "Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis," Oncotarget, vol. 8, pp. 104136-104148, 2017.

[30]D. F. Calvisi, C. Wang, C. Ho, S. Ladu, S. A. Lee, S. Mattu, et al., "Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma," Gastroenterology, vol. 140, pp. 1071-1083. e5, 2011.

[31]P. Xu, M. Wu, H. Chen, J. Xu, M. Wu, M. Li, et al., "Bioinformatics analysis of hepatitis C virus genotype 2a-induced human hepatocellular carcinoma in Huh7 cells," OncoTargets and therapy, vol. 9, pp. 191-202, 2016.

[32]J. W. Clendening, A. Pandyra, P. C. Boutros, S. El Ghamrasni, F. Khosravi, G. A. Trentin, et al., "Dysregulation of the mevalonate pathway promotes transformation," Proceedings of the National Academy of Sciences, vol. 107, pp. 15051-15056, 2010.

[33]S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare, et al., "COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer," Nucleic acids research, vol. 39, pp. D945-D950, 2010.

[34]G. Gruenbacher and M. Thurnher, "Mevalonate metabolism in cancer," Cancer letters, vol. 356, pp. 192-196, 2015.

[35]T. J. Marquart, R. M. Allen, D. S. Ory, and Á. Baldán, "miR-33 links SREBP-2 induction to repression of sterol transporters," Proceedings of the National Academy of Sciences, vol. 107, pp. 12228-12232, 2010.

[36]T. Murai, "Cholesterol lowering: role in cancer prevention and treatment," Biological chemistry, vol. 396, pp. 1-11, 2015.

[37]J. M. Wu, N. J. Skill, and M. A. Maluccio, "Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma," HPB, vol. 12, pp. 625-636, 2010.

[38]N. Camarero, C. Mascaró, C. Mayordomo, F. Vilardell, D. Haro, and P. F. Marrero, "Ketogenic HMGCS2 Is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer," Molecular cancer research, vol. 4, pp. 645-653, 2006.

[39]H. Tang, Y. Wu, Y. Qin, H. Wang, Y. Jia, S. Yang, et al., "Predictive significance of HMGCS2 for prognosis in resected Chinese esophageal squamous cell carcinoma patients," OncoTargets and therapy, vol. 10, pp. 2553-2560, 2017.

[40]M. A. Medina, A. R. Quesada, I. N. de Castro, and F. Sánchez-Jiménez, "Histamine, polyamines, and cancer," Biochemical pharmacology, vol. 57, pp. 1341-1344, 1999.

[41]G. Kahlson and E. Rosengren, "New approaches to the physiology of histamine," Physiological Reviews, vol. 48, pp. 155-196, 1968.

[42]H.-Q. Wu, M.-L. Cheng, J.-M. Lai, H.-H. Wu, M.-C. Chen, W.-H. Liu, et al., "Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a," PLoS computational biology, vol. 13, pp. 1-22, 2017.

[43]K. D. Corbin and S. H. Zeisel, "Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression," Current opinion in gastroenterology, vol. 28, pp. 1-13, 2012.

[44]Y.-W. Teng, M. G. Mehedint, T. A. Garrow, and S. H. Zeisel, "Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas," Journal of Biological Chemistry, vol. 286, pp. 36258-36267, 2011.

[45]R. V. Kendall and J. W. Lawson, "Recent findings on N, N-dimethylglycine (DMG): a nutrient for the new millennium," Townsend Letter for Doctors and Patients, pp. 75-85, 2000.

[46]H. Pellanda, F. Namour, A. Bressenot, J.-M. Alberto, C. Chéry, A. Ayav, et al., "A splicing variant leads to complete loss of function of betaine–homocysteine methyltransferase (BHMT) gene in hepatocellular carcinoma," The international journal of biochemistry & cell biology, vol. 44, pp. 385-392, 2012.

[47]M. Ebbing, K. H. Bønaa, O. Nygård, E. Arnesen, P. M. Ueland, J. E. Nordrehaug, et al., "Cancer incidence and mortality after treatment with folic acid and vitamin B12," Jama, vol. 302, pp. 2119-2126, 2009.

[48]J. W. Locasale, "Serine, glycine and one-carbon units: cancer metabolism in full circle," Nature reviews Cancer, vol. 13, pp. 1-12, 2013.

[49]M. Yang and K. H. Vousden, "Serine and one-carbon metabolism in cancer," Nature Reviews Cancer, vol. 16, pp. 650-662, 2016.

[50]I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, and G. Melino, "Serine and glycine metabolism in cancer," Trends in biochemical sciences, vol. 39, pp. 191-198, 2014.

[51]A. C. Mamede, S. D. Tavares, A. M. Abrantes, J. Trindade, J. M. Maia, and M. F. Botelho, "The role of vitamins in cancer: a review," Nutrition and cancer, vol. 63, pp. 479-494, 2011.

[52]C.-W. Lu, Y.-H. Lo, C.-H. Chen, C.-Y. Lin, C.-H. Tsai, P.-J. Chen, et al., "VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis," Cancer letters, vol. 388, pp. 130-138, 2017.

[53]F. Geng, X. Cheng, X. Wu, J. Y. Yoo, C. Cheng, J. Y. Guo, et al., "Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1–mediated lipogenesis," Clinical Cancer Research, vol. 22, pp. 5337-5348, 2016.

[54]S. Y. Lee, I. K. Hong, B. R. Kim, S. M. Shim, J. Sung Lee, H. Y. Lee, et al., "Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice," Hepatology, vol. 62, pp. 135-146, 2015.

[55]B. Kleuser, "Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease," International journal of molecular sciences, vol. 19, pp. 1-18, 2018.

[56]J. Chen, Y. Qi, Y. Zhao, D. Kaczorowski, T. A. Couttas, P. R. Coleman, et al., "Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice," Oncotarget, vol. 9, pp. 15635-15649, 2018.

[57]Z. Lu, W. Zhang, S. Gao, Q. Jiang, Z. Xiao, L. Ye, et al., "MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA," Biochemical and biophysical research communications, vol. 468, pp. 8-13, 2015.

[58]M. Bao, Z. Chen, Y. Xu, Y. Zhao, R. Zha, S. Huang, et al., "Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma," Liver international, vol. 32, pp. 331-338, 2012.

[59]H. A. Neubauer and S. M. Pitson, "Roles, regulation and inhibitors of sphingosine kinase 2," The FEBS journal, vol. 280, pp. 5317-5336, 2013.

[60]W.-C. Huang, C.-L. Chen, Y.-S. Lin, and C.-F. Lin, "Apoptotic sphingolipid ceramide in cancer therapy," Journal of lipids, vol. 2011, pp. 1-15, 2011.

[61]D. Shida, X. Fang, T. Kordula, K. Takabe, S. Lépine, S. E. Alvarez, et al., "Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion," Cancer research, vol. 68, pp. 6569-6577, 2008.

[62]M. Maceyka, H. Sankala, N. C. Hait, H. Le Stunff, H. Liu, R. Toman, et al., "SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism," Journal of Biological Chemistry, vol. 280, pp. 37118-37129, 2005.

[63]N. J. Pyne and S. Pyne, "Sphingosine 1-phosphate and cancer," Nature Reviews Cancer, vol. 10, pp. 97-106, 2010.

[64]K. Sugiyama, H. Ebinuma, N. Nakamoto, N. Sakasegawa, Y. Murakami, P.-s. Chu, et al., "Prominent steatosis with hypermetabolism of the cell line permissive for years of infection with hepatitis C virus," PloS one, vol. 9, pp. 1-18, 2014.

[65]S. M. Kessler, Y. Simon, K. Gemperlein, K. Gianmoena, C. Cadenas, V. Zimmer, et al., "Fatty acid elongation in non-alcoholic steatohepatitis and hepatocellular carcinoma," International journal of molecular sciences, vol. 15, pp. 5762-5773, 2014.

[66]C. Kampf, A. Mardinoglu, L. Fagerberg, B. M. Hallström, K. Edlund, E. Lundberg, et al., "The human liver-specific proteome defined by transcriptomics and antibody-based profiling," The FASEB Journal, vol. 28, pp. 2901-2914, 2014.

[67]L. Li, G. M. Pilo, X. Li, A. Cigliano, G. Latte, L. Che, et al., "Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans," Journal of hepatology, vol. 64, pp. 333-341, 2016.

[68]K. Muir, A. Hazim, Y. He, M. Peyressatre, D.-Y. Kim, X. Song, et al., "Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma," Cancer research, vol. 73, pp. 4722-4731, 2013.

[69]M. A. Rubin, M. Zhou, S. M. Dhanasekaran, S. Varambally, T. R. Barrette, M. G. Sanda, et al., "α-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer," Jama, vol. 287, pp. 1662-1670, 2002.

[70]W. Li, P. T. Cagle, R. C. Botero, J. J. Liang, Z. Zhang, and D. Tan, "Significance of overexpression of alpha methylacyl-coenzyme A racemase in hepatocellular carcinoma," Journal of Experimental & Clinical Cancer Research, vol. 27, pp. 1-6, 2008.

[71]Z. Jiang, G. R. Fanger, B. A. Woda, B. F. Banner, P. Algate, K. Dresser, et al., "Expression of α-methylacyl-CoA racemase (P504s) in various malignant neoplasms and normal tissues: a study of 761 cases," Human pathology, vol. 34, pp. 792-796, 2003.

[72]H. R. Waterham, S. Ferdinandusse, and R. J. Wanders, "Human disorders of peroxisome metabolism and biogenesis," Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1863, pp. 922-933, 2016.

[73]X. Wang, X. Fu, C. Van Ness, Z. Meng, X. Ma, and W. Huang, "Bile acid receptors and liver cancer," Current pathobiology reports, vol. 1, pp. 29-35, 2013.

[74]S. Beloribi-Djefaflia, S. Vasseur, and F. Guillaumond, "Lipid metabolic reprogramming in cancer cells," Oncogenesis, vol. 5, pp. 1-10, 2016.

[75]S. Sbiera, E. Leich, G. Liebisch, I. Sbiera, A. Schirbel, L. Wiemer, et al., "Mitotane inhibits sterol-O-acyl transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells," Endocrinology, vol. 156, pp. 3895-3908, 2015.

[76]C. H. Best, "The disappearance of histamine from autolysing lung tissue," The Journal of physiology, vol. 67, pp. 256-263, 1929.

[77]J. Finney, H.-J. Moon, T. Ronnebaum, M. Lantz, and M. Mure, "Human copper-dependent amine oxidases," Archives of biochemistry and biophysics, vol. 546, pp. 19-32, 2014.

[78]K. M. Kirschner, J. F. Braun, C. L. Jacobi, L. J. Rudigier, A. B. Persson, and H. Scholz, "Amine oxidase copper-containing 1 (AOC1) is a downstream target gene of the Wilms tumor protein, WT1, during kidney development," Journal of Biological Chemistry, vol. 289, pp. 24452-24462, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊