|
[1]L. Hood, "A personal journey of discovery: developing technology and changing biology," Annu. Rev. Anal. Chem., vol. 1, pp. 1-43, 2008.
[2]M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist, et al., "Phases of biomarker development for early detection of cancer," Journal of the National Cancer Institute, vol. 93, pp. 1054-1061, 2001.
[3]I. Thiele, N. Swainston, R. M. Fleming, A. Hoppe, S. Sahoo, M. K. Aurich, et al., "A community-driven global reconstruction of human metabolism," Nature biotechnology, vol. 31, pp. 419-425, 2013.
[4]N. C. Duarte, S. A. Becker, N. Jamshidi, I. Thiele, M. L. Mo, T. D. Vo, et al., "Global reconstruction of the human metabolic network based on genomic and bibliomic data," Proceedings of the National Academy of Sciences, vol. 104, pp. 1777-1782, 2007.
[5]N. Swainston, K. Smallbone, H. Hefzi, P. D. Dobson, J. Brewer, M. Hanscho, et al., "Recon 2.2: from reconstruction to model of human metabolism," Metabolomics, vol. 12, pp. 1-7, 2016.
[6]F. Hirschhaeuser, U. G. Sattler, and W. Mueller-Klieser, "Lactate: a metabolic key player in cancer," Cancer research, vol. 71, pp. 6921-6925, 2011.
[7]W. H. Koppenol, P. L. Bounds, and C. V. Dang, "Otto Warburg's contributions to current concepts of cancer metabolism," Nature Reviews Cancer, vol. 11, pp. 325-337, 2011.
[8]J. Fan, J. J. Kamphorst, R. Mathew, M. K. Chung, E. White, T. Shlomi, et al., "Glutamine‐driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia," Molecular systems biology, vol. 9, pp. 1-11, 2013.
[9]F. Pontén, K. Jirström, and M. Uhlen, "The Human Protein Atlas—a tool for pathology," The Journal of pathology, vol. 216, pp. 387-393, 2008.
[10]A. Schultz and A. A. Qutub, "Reconstruction of tissue-specific metabolic networks using CORDA," PLoS computational biology, vol. 12, pp. 1-33, 2016.
[11]C. V. Dang, "Links between metabolism and cancer," Genes & development, vol. 26, pp. 877-890, 2012.
[12]J. D. Orth, I. Thiele, and B. Ø. Palsson, "What is flux balance analysis?," Nature biotechnology, vol. 28, pp. 1-7, 2010.
[13]K. D. Pruitt and D. R. Maglott, "RefSeq and LocusLink: NCBI gene-centered resources," Nucleic acids research, vol. 29, pp. 137-140, 2001.
[14]E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, "ExPASy: the proteomics server for in-depth protein knowledge and analysis," Nucleic acids research, vol. 31, pp. 3784-3788, 2003.
[15]M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, "KEGG for integration and interpretation of large-scale molecular data sets," Nucleic acids research, vol. 40, pp. 109-114, 2011.
[16]M. Rebhan, V. Chalifa-Caspi, J. Prilusky, and D. Lancet, "GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support," Bioinformatics (Oxford, England), vol. 14, pp. 656-664, 1998.
[17]M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, et al., "Tissue-based map of the human proteome," Science, vol. 347, pp. 1-11, 2015.
[18]A. Noronha, A. D. Daníelsdóttir, P. Gawron, F. Jóhannsson, S. Jónsdóttir, S. Jarlsson, et al., "ReconMap: an interactive visualization of human metabolism," Bioinformatics, vol. 33, pp. 605-607, 2016.
[19]M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, et al., "The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models," Bioinformatics, vol. 19, pp. 524-531, 2003.
[20]T. F. Rutherford, "Applied general equilibrium modeling with MPSGE as a GAMS subsystem: An overview of the modeling framework and syntax," Computational economics, vol. 14, pp. 1-46, 1999.
[21]N. M. Zacharias, C. McCullough, S. Shanmugavelandy, J. Lee, Y. Lee, P. Dutta, et al., "Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer," Scientific reports, vol. 7, pp. 1-11, 2017.
[22]T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan, and E. Ruppin, "Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect," PLoS computational biology, vol. 7, pp. 1-9, 2011.
[23]C. M. Croce, "Causes and consequences of microRNA dysregulation in cancer," Nature reviews genetics, vol. 10, pp. 1-19, 2009.
[24]A. Budhu, S. Roessler, X. Zhao, Z. Yu, M. Forgues, J. Ji, et al., "Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes," Gastroenterology, vol. 144, pp. 1066-1075. e1, 2013.
[25]M. M. Barron, K. M. Shaw, K. M. Bullard, M. K. Ali, and M. J. Magee, "Diabetes mellitus is associated with increased prevalence of latent tuberculosis infection: Results from the National Health and Nutrition Examination Survey," bioRxiv, pp. 1-32, 2017.
[26]T. Lang, "Reference intervals: the GB data," Clinical biochemistry, vol. 44, pp. 1-3, 2011.
[27]P. F. Suthers, M. S. Dasika, V. S. Kumar, G. Denisov, J. I. Glass, and C. D. Maranas, "A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189," PLoS Computational Biology, vol. 5, pp. 1-14, 2009.
[28]K.-C. Hsu and F.-S. Wang, "Model-based optimization approaches for precision medicine: A case study in presynaptic dopamine overactivity," PloS one, vol. 12, pp. 1-19, 2017.
[29]C. Enríquez-Cortina, O. Bello-Monroy, P. Rosales-Cruz, V. Souza, R. U. Miranda, R. Toledo-Pérez, et al., "Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis," Oncotarget, vol. 8, pp. 104136-104148, 2017.
[30]D. F. Calvisi, C. Wang, C. Ho, S. Ladu, S. A. Lee, S. Mattu, et al., "Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma," Gastroenterology, vol. 140, pp. 1071-1083. e5, 2011.
[31]P. Xu, M. Wu, H. Chen, J. Xu, M. Wu, M. Li, et al., "Bioinformatics analysis of hepatitis C virus genotype 2a-induced human hepatocellular carcinoma in Huh7 cells," OncoTargets and therapy, vol. 9, pp. 191-202, 2016.
[32]J. W. Clendening, A. Pandyra, P. C. Boutros, S. El Ghamrasni, F. Khosravi, G. A. Trentin, et al., "Dysregulation of the mevalonate pathway promotes transformation," Proceedings of the National Academy of Sciences, vol. 107, pp. 15051-15056, 2010.
[33]S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare, et al., "COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer," Nucleic acids research, vol. 39, pp. D945-D950, 2010.
[34]G. Gruenbacher and M. Thurnher, "Mevalonate metabolism in cancer," Cancer letters, vol. 356, pp. 192-196, 2015.
[35]T. J. Marquart, R. M. Allen, D. S. Ory, and Á. Baldán, "miR-33 links SREBP-2 induction to repression of sterol transporters," Proceedings of the National Academy of Sciences, vol. 107, pp. 12228-12232, 2010.
[36]T. Murai, "Cholesterol lowering: role in cancer prevention and treatment," Biological chemistry, vol. 396, pp. 1-11, 2015.
[37]J. M. Wu, N. J. Skill, and M. A. Maluccio, "Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma," HPB, vol. 12, pp. 625-636, 2010.
[38]N. Camarero, C. Mascaró, C. Mayordomo, F. Vilardell, D. Haro, and P. F. Marrero, "Ketogenic HMGCS2 Is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer," Molecular cancer research, vol. 4, pp. 645-653, 2006.
[39]H. Tang, Y. Wu, Y. Qin, H. Wang, Y. Jia, S. Yang, et al., "Predictive significance of HMGCS2 for prognosis in resected Chinese esophageal squamous cell carcinoma patients," OncoTargets and therapy, vol. 10, pp. 2553-2560, 2017.
[40]M. A. Medina, A. R. Quesada, I. N. de Castro, and F. Sánchez-Jiménez, "Histamine, polyamines, and cancer," Biochemical pharmacology, vol. 57, pp. 1341-1344, 1999.
[41]G. Kahlson and E. Rosengren, "New approaches to the physiology of histamine," Physiological Reviews, vol. 48, pp. 155-196, 1968.
[42]H.-Q. Wu, M.-L. Cheng, J.-M. Lai, H.-H. Wu, M.-C. Chen, W.-H. Liu, et al., "Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a," PLoS computational biology, vol. 13, pp. 1-22, 2017.
[43]K. D. Corbin and S. H. Zeisel, "Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression," Current opinion in gastroenterology, vol. 28, pp. 1-13, 2012.
[44]Y.-W. Teng, M. G. Mehedint, T. A. Garrow, and S. H. Zeisel, "Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas," Journal of Biological Chemistry, vol. 286, pp. 36258-36267, 2011.
[45]R. V. Kendall and J. W. Lawson, "Recent findings on N, N-dimethylglycine (DMG): a nutrient for the new millennium," Townsend Letter for Doctors and Patients, pp. 75-85, 2000.
[46]H. Pellanda, F. Namour, A. Bressenot, J.-M. Alberto, C. Chéry, A. Ayav, et al., "A splicing variant leads to complete loss of function of betaine–homocysteine methyltransferase (BHMT) gene in hepatocellular carcinoma," The international journal of biochemistry & cell biology, vol. 44, pp. 385-392, 2012.
[47]M. Ebbing, K. H. Bønaa, O. Nygård, E. Arnesen, P. M. Ueland, J. E. Nordrehaug, et al., "Cancer incidence and mortality after treatment with folic acid and vitamin B12," Jama, vol. 302, pp. 2119-2126, 2009.
[48]J. W. Locasale, "Serine, glycine and one-carbon units: cancer metabolism in full circle," Nature reviews Cancer, vol. 13, pp. 1-12, 2013.
[49]M. Yang and K. H. Vousden, "Serine and one-carbon metabolism in cancer," Nature Reviews Cancer, vol. 16, pp. 650-662, 2016.
[50]I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, and G. Melino, "Serine and glycine metabolism in cancer," Trends in biochemical sciences, vol. 39, pp. 191-198, 2014.
[51]A. C. Mamede, S. D. Tavares, A. M. Abrantes, J. Trindade, J. M. Maia, and M. F. Botelho, "The role of vitamins in cancer: a review," Nutrition and cancer, vol. 63, pp. 479-494, 2011.
[52]C.-W. Lu, Y.-H. Lo, C.-H. Chen, C.-Y. Lin, C.-H. Tsai, P.-J. Chen, et al., "VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis," Cancer letters, vol. 388, pp. 130-138, 2017.
[53]F. Geng, X. Cheng, X. Wu, J. Y. Yoo, C. Cheng, J. Y. Guo, et al., "Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1–mediated lipogenesis," Clinical Cancer Research, vol. 22, pp. 5337-5348, 2016.
[54]S. Y. Lee, I. K. Hong, B. R. Kim, S. M. Shim, J. Sung Lee, H. Y. Lee, et al., "Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice," Hepatology, vol. 62, pp. 135-146, 2015.
[55]B. Kleuser, "Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease," International journal of molecular sciences, vol. 19, pp. 1-18, 2018.
[56]J. Chen, Y. Qi, Y. Zhao, D. Kaczorowski, T. A. Couttas, P. R. Coleman, et al., "Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice," Oncotarget, vol. 9, pp. 15635-15649, 2018.
[57]Z. Lu, W. Zhang, S. Gao, Q. Jiang, Z. Xiao, L. Ye, et al., "MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA," Biochemical and biophysical research communications, vol. 468, pp. 8-13, 2015.
[58]M. Bao, Z. Chen, Y. Xu, Y. Zhao, R. Zha, S. Huang, et al., "Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma," Liver international, vol. 32, pp. 331-338, 2012.
[59]H. A. Neubauer and S. M. Pitson, "Roles, regulation and inhibitors of sphingosine kinase 2," The FEBS journal, vol. 280, pp. 5317-5336, 2013.
[60]W.-C. Huang, C.-L. Chen, Y.-S. Lin, and C.-F. Lin, "Apoptotic sphingolipid ceramide in cancer therapy," Journal of lipids, vol. 2011, pp. 1-15, 2011.
[61]D. Shida, X. Fang, T. Kordula, K. Takabe, S. Lépine, S. E. Alvarez, et al., "Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion," Cancer research, vol. 68, pp. 6569-6577, 2008.
[62]M. Maceyka, H. Sankala, N. C. Hait, H. Le Stunff, H. Liu, R. Toman, et al., "SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism," Journal of Biological Chemistry, vol. 280, pp. 37118-37129, 2005.
[63]N. J. Pyne and S. Pyne, "Sphingosine 1-phosphate and cancer," Nature Reviews Cancer, vol. 10, pp. 97-106, 2010.
[64]K. Sugiyama, H. Ebinuma, N. Nakamoto, N. Sakasegawa, Y. Murakami, P.-s. Chu, et al., "Prominent steatosis with hypermetabolism of the cell line permissive for years of infection with hepatitis C virus," PloS one, vol. 9, pp. 1-18, 2014.
[65]S. M. Kessler, Y. Simon, K. Gemperlein, K. Gianmoena, C. Cadenas, V. Zimmer, et al., "Fatty acid elongation in non-alcoholic steatohepatitis and hepatocellular carcinoma," International journal of molecular sciences, vol. 15, pp. 5762-5773, 2014.
[66]C. Kampf, A. Mardinoglu, L. Fagerberg, B. M. Hallström, K. Edlund, E. Lundberg, et al., "The human liver-specific proteome defined by transcriptomics and antibody-based profiling," The FASEB Journal, vol. 28, pp. 2901-2914, 2014.
[67]L. Li, G. M. Pilo, X. Li, A. Cigliano, G. Latte, L. Che, et al., "Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans," Journal of hepatology, vol. 64, pp. 333-341, 2016.
[68]K. Muir, A. Hazim, Y. He, M. Peyressatre, D.-Y. Kim, X. Song, et al., "Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma," Cancer research, vol. 73, pp. 4722-4731, 2013.
[69]M. A. Rubin, M. Zhou, S. M. Dhanasekaran, S. Varambally, T. R. Barrette, M. G. Sanda, et al., "α-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer," Jama, vol. 287, pp. 1662-1670, 2002.
[70]W. Li, P. T. Cagle, R. C. Botero, J. J. Liang, Z. Zhang, and D. Tan, "Significance of overexpression of alpha methylacyl-coenzyme A racemase in hepatocellular carcinoma," Journal of Experimental & Clinical Cancer Research, vol. 27, pp. 1-6, 2008.
[71]Z. Jiang, G. R. Fanger, B. A. Woda, B. F. Banner, P. Algate, K. Dresser, et al., "Expression of α-methylacyl-CoA racemase (P504s) in various malignant neoplasms and normal tissues: a study of 761 cases," Human pathology, vol. 34, pp. 792-796, 2003.
[72]H. R. Waterham, S. Ferdinandusse, and R. J. Wanders, "Human disorders of peroxisome metabolism and biogenesis," Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1863, pp. 922-933, 2016.
[73]X. Wang, X. Fu, C. Van Ness, Z. Meng, X. Ma, and W. Huang, "Bile acid receptors and liver cancer," Current pathobiology reports, vol. 1, pp. 29-35, 2013.
[74]S. Beloribi-Djefaflia, S. Vasseur, and F. Guillaumond, "Lipid metabolic reprogramming in cancer cells," Oncogenesis, vol. 5, pp. 1-10, 2016.
[75]S. Sbiera, E. Leich, G. Liebisch, I. Sbiera, A. Schirbel, L. Wiemer, et al., "Mitotane inhibits sterol-O-acyl transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells," Endocrinology, vol. 156, pp. 3895-3908, 2015.
[76]C. H. Best, "The disappearance of histamine from autolysing lung tissue," The Journal of physiology, vol. 67, pp. 256-263, 1929.
[77]J. Finney, H.-J. Moon, T. Ronnebaum, M. Lantz, and M. Mure, "Human copper-dependent amine oxidases," Archives of biochemistry and biophysics, vol. 546, pp. 19-32, 2014.
[78]K. M. Kirschner, J. F. Braun, C. L. Jacobi, L. J. Rudigier, A. B. Persson, and H. Scholz, "Amine oxidase copper-containing 1 (AOC1) is a downstream target gene of the Wilms tumor protein, WT1, during kidney development," Journal of Biological Chemistry, vol. 289, pp. 24452-24462, 2014.
|