跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莫尚軒
研究生(外文):Shang-Hsuan Mo
論文名稱:添加一氧化碳於衝擊丙烷火焰之燃燒特性研究
論文名稱(外文):The Effect of CO Addition on Combustion Mechanisms of Impinging Propane Flame
指導教授:楊鏡堂楊鏡堂引用關係
指導教授(外文):Jing-Tang Yang
口試委員:吳宗信林成原王興華
口試委員(外文):Chong-Sin GouCherng-Yuan LinChing-Hua Wang
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:貧油燃燒生質合成氣丙烷一氧化碳衝擊流場
外文關鍵詞:lean combustionbio-syngaspropanecarbon-monoxideimpinging flow
相關次數:
  • 被引用被引用:2
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於能源與環境污染的問題,目前世界各國正積極尋找替代能源以取代化石燃料的燃燒,其中生質合成氣具有可再生的特性,且若其取代化石燃料燃燒後可大幅降低碳足跡,是極具發展潛力的能源。
本研究將生質合成氣主成分之一的一氧化碳添加於貧油預混丙烷燃氣中,以兩向衝擊燃燒器為載具,利用溫度量測、流場可視化、化學螢光法、及燃燒後廢氣分析,對添加一氧化碳後貧油預混丙烷衝擊火焰的穩焰機制進行歸納探討。實驗所觀察到的火焰型態大致可分為M型火焰與丘型火焰兩種,而一氧化碳添加比例的增加會導致火焰傳播速度與火焰溫度的上升,一定程度的一氧化碳添加比例可使丘型火焰轉變為M型火焰。實驗量測發現火焰型態的轉變對燃燒後廢氣所含一氧化碳濃度有很大的影響,由於一氧化碳中的氧碳三鍵鍵能較高,導致其活化能較高,需要較高的能量才能夠進行反應,若在原為丘型火焰的純丙烷預混火焰中以固定當量比的條件下提升燃料所含一氧化碳比例,可發現燃燒後廢氣之一氧化碳濃度持續上升,可見許多添加之一氧化碳未被消耗;然而當一氧化碳添加比例到達一定量導致火焰型態變為M型時,燃燒後廢氣所含一氧化碳濃度隨燃料中一氧化碳添加比例增加而呈大幅度下降,此現象可歸因於流場與燃燒場的共同作用。由於燃燒器特殊的幾何形狀,燃燒器出口下游兩股噴流匯集處產生流場衝擊區,其中M型火焰所製造出的高溫衝擊區可讓添加一氧化碳之燃氣擁有較長時間維持高溫以充分進行反應。
本研究成果有助於了解一氧化碳的添加對貧油預混丙烷燃燒反應的影響,以及添加一氧化碳貧油預混丙烷衝擊火焰的燃燒機制,並驗證衝擊流場對一氧化碳燃燒的良好效果,進一步促進生質合成氣於工業與家庭燃燒上的應用。


The mechanisms of lean combustion of propane with/without CO addition on a V-shaped burner have been investigated through the analysis of both flow and combustion fields. The flame patterns and flame temperatures under different mixing conditions were measured and recorded. Moreover, the measurement of chemiluminescence and the flow visualization were applied to obtain the distributions of C2* and CH* intensity, and flow velocity, respectively, during the combustion process. Also, the exhaust gas was analyzed in order to identify the participation of CO in the combustion taking place on the V-shaped burner. The flame patterns observed in this work could be divided into two groups, M-typed and hill-typed flames. The empirical results showed that the flame propagation speed increased with CO concentration in the fuel, and the addition of CO might cause a change of the flame pattern from hill-type to M-type. Besides, both the flame temperature and the intensity of chemiluminescence increased, and the lower flammability limit decreased when CO concentration in the fuel rose. By analyzing the chemiluminescence and the exhaust gas, the imping effect caused by the V-shaped burner was found improving the combustion of mixtures of Propane/CO due to the high temperature in the impinging area. In the M-typed flame, the collision of gas jets reduced heat loss, and hence the impinging flow structure was able to maintain a high temperature, so that the combustion of CO, whose activation energy is comparatively high, can still take place in the impinging area. The findings provide industries a good concept of burning CO, and it can be further extended to the combustion of syngas.

摘要 II
Abstract V
圖目錄 IX
表目錄 XI
符號說明 XII
第一章 前言 1
1.1. 研究背景 1
1.2. 研究動機與願景 2
第二章 文獻回顧 3
2.1. 火焰與流場間的關係 4
2.1.1. 燃燒反應區與火焰面特性 4
2.1.2. 流場與火焰的相互作用 4
2.1.3. 火焰間的交互作用 6
2.1.4. 流場與燃燒反應量測技術 7
2.2. 預混燃燒特性 9
2.2.1. 當量比 9
2.2.2. 燃燒中的化學反應 10
2.2.3. 火焰的不穩定性 11
2.2.4. 上飄火焰與火焰熄滅 11
2.3. 合成氣燃燒特性 12
2.3.1. 合成氣燃燒中的化學反應 12
2.3.2. 火焰溫度與火焰傳播速度 14
2.3.3. 質量與熱量傳遞效應 16
2.4. 文獻總結 17
第三章 研究方法 18
3.1. 燃氣供應系統與實驗載具 19
3.1.1. 燃料選擇 19
3.1.2. 供氣系統 19
3.1.3. 燃燒器構造 20
3.1.4. 實驗設置 22
3.1.5. 實驗參數說明 23
3.2. 火焰型態拍攝與溫度量測 24
3.2.1. 火焰型態拍攝 24
3.2.2. 溫度量測 27
3.3. 燃燒流場可視化 28
3.3.1. 燃燒流場可視化實驗設備 29
3.3.2. 雷射系統 30
3.3.3. 示蹤粒子 31
3.4. 化學螢光量測 32
3.4.1. 化學螢光法原理 32
3.4.2. 高速攝影機與鏡頭 33
3.4.3. 光學窄頻濾鏡 35
3.5. 廢氣量測分析 35
3.5.1. 廢氣量測實驗架設 35
3.5.2. 廢氣量測儀器 36
第四章 結果與討論 38
4.1. 衝擊火焰型態 38
4.1.1. 操作區間 39
4.1.2. 添加一氧化碳對火焰型態的影響 41
4.1.3. 一氧化碳添加比例對操作範圍的影響 43
4.2. 衝擊火焰的溫度量測 44
4.3. 衝擊火焰的化學螢光與流場分析 47
4.3.1. 兩種火焰型態的流場分析 47
4.3.2. 丙烷預混火焰化學螢光分析 49
4.3.3. 添加一氧化碳對化學螢光分布之影響 50
4.3.4. 一氧化碳添加比例對化學螢光分布之影響 52
4.4. 燃燒後廢氣分析 53
4.4.1. 丙烷預混火焰燃燒後廢氣分析 53
4.4.2. 燃氣添加一氧化碳之燃燒後廢氣分析 54
第五章 結論 57
參考文獻 60


Alekseenko, S. V., Dulin, V. M., Kozorezov, Yu. S., and Markovich, D. M. (2012) Effect of High-Amplitude Forcing on Turbulent Combustion Intensity and Vortex Core Precession in a Strongly Swirling Lifted Propane/Air Flame. Combustion Science and Technology, 184, 1862.
Ballard-Tremeer, G. and Jawurek, H. H. (1999) The "Hood Method" of Measuring Emissions of Rural Cooking Devices. Biomass & Bioenergy, 16, 341.
Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., and Smooke, M. D. (2000)
Computational and Experimental Study of Axisymmetric Coflow Partially Premixed
Methane/Air Flames. Combustion and Flame, 123, 522.
Boushaki, T., Mergheni, M. A., Sautet, J. C., Labegorre, B. (2008) Effects of Inclined Jets on Turbulent Oxy-flame Characteristics in a Triple Jet Burner. Experimental Thermal and Fluid Science, 32, 1363.
Boxx, I., Arndt, C. M., Carter, C. D., Meier, W. (2012) High-speed Laser Diagnostics for the Study of Flame Dynamics in a Lean Premixed Gas Turbine Model Combustor. Experiments in Fluids, 52, 555.
Butcher, S. S., Rao, U., Smith, K. R., Osborn, J. F., Azuma, P., Fields, H. (1984) Emission Factors and Efficiencies for Small-Scale Open Biomass Combustion - toward Standard Measurement Techniques. Abstracts of Papers of the American Chemical Society, 188, 105.
Cheng, Z. G., Pitz, R. W., Wehrmeyer, J. A. (2006) Lean and Ultralean Stretched Propane-air Counterflow Flames. Combustion and Flame, 145, 647.
Cuoci, A., Frassoldati, A., Ferraris, G. B., Faravelli, T., Ranzi, E. (2007) The Ignition, Combustion and Flame Structure of Carbon Monoxide/hydrogen Mixtures. Note 2: Fluid Dynamics and Kinetic Aspects of Syngas Combustion. International Journal of Hydrogen Energy, 32, 3486.
Davis, S. G., Joshi, A. V., Wang, H., Egolfopoulos, F. (2005) An Optimized Kinetic Model of H2/CO Combustion. Proceedings of the Combustion Institute, 30, 1283.
Dong, C., Q. Zhou, Q. L., Zhao, Q. X., Zhang, Y. Q., Xu, T. M., Hui, S., (2009), Experimental Study on the Laminar Flame Speed of Hydrogen/carbon Monoxide/air Mixtures. Fuel, 88, 1858.
Han, D. and Mungal, M. G. (2003) Simultaneous Measurements of Velocity and CH, Distribution. Part II: Deflected Jet Flames. Combustion and Flame, 133, 1.
Huang, R. F. and Yen, S. C. (2008) Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers. Combustion and Flame, 155, 539.
Joshi, A. V. and Wang, H. (2006) Master Equation Modeling of Wide Range Temperature and Pressure Dependence of CO + OH -> Products. International Journal of Chemical Kinetics, 38, 57.
Kanury, A. (1975) Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, Chapter 7 & Chapter 8.
Kiefer, J., Li, Z. S., Zetterberg, J., Bai, X. S., and Aldén, M. (2008) Investigation of Local Flame Structures and Statistics in Partially Premixed Turbulent Jet Flames Using Simultaneous Single-shot CH and OH Planar Laser-induced Fluorescence Imaging. Combustion and Flame, 154, 802.
Kojima, J., Ikeda, Y. and Nakajima, T. (2000) Spatially Resolved Measurement of OH*, CH*, and C2* Chemiluminescence in the Reaction Zone of Laminar Methane/air Premixed Flames. Proc. Combust. Inst., 28, 1757.
Kostiuk, L. W., Bray, K. N. C., Cheng, R. K. (1993) Experimental Study of Premixed Turbulent Combustion in Opposed Streams. 2. Reacting Flow Field and Extinction. Combustion and Flame, 92, 396.
Kwok, L. C., Leung, C. W., Cheung, C. S., (2005) Heat Transfer Characteristics of an Array of Impinging Pre-mixed Slot Flame Jets. International Journal of Heat and Mass Transfer, 48, 1727.
Lask, G., Wagner, H. G. (1960) Influence of Additives on the Velocity of Laminar Flames. Proceedings of the Combustion Institute, 8, 432.
Law, C. K. (2006) Combustion Physics, Cambridge University Press, New York.
Lee, T. W., North, G. L., and Santavicca, D. A. (1993) Surface Properties of Turbulent Premixed Propane/air Flames at Various Lewis Number. Combustion and Flame, 93, 445.
Lin, H. C., Cheng, T. S., Chen, B. C., Ho, C. C., Chao, Y. C. (2009) A Comprehensive Study of Two Interactive Parallel Premixed Methane Flames on Lean Combustion. Proceedings of the Combustion Institute, 32, 995.
Mikami, M., Kato, H., Sato, J., Kono, M. (1994) Interactive Combustion of Two Droplets in Microgravity. Symposium (International) on Combustion, 25, 431.
Moore, N. J., Kribs, J., Lyons, K. M. (2011) Investigation of Jet-Flame Blowout with Lean-Limit Considerations. Flow Turbulence and Combustion, 87, 525.
Mueller, M. A., Yetter, R. A., Dryer, F. L. (1999) Flow Reactor Studies and Kinetic Modeling of the H2/O2/NOx and CO/H2O/O2/NOx Reactions. International Journal of Chemical Kinetics, 31, 705.
Nishimura, T., Kunitsugu, K., Mono, K. (2012) The Hysteresis Phenomenon in Flame Lift-off on a Bluff-body Burner under Airflow Dominant Conditions. Combustion and Flame, 159, 1499.
Ragland, K. W., and Bryden, K. M. (2011) Combustion Engineering, Second Edition, CRC Press, Chapter 5.
Seffrin, F., and Fuest, F. (2010) Flow Field Studies of a New Series of Turbulent Premixed Stratified Flames. Combustion and Flame, 157, 384.
Shih, H. Y., and Hsu, J. R. (2011) A Computational Study of Combustion and Extinction of Opposed-jet Syngas Diffusion Flames. International Journal of Hydrogen Energy, 36, 15868.
Stwalley, R. M. and A. H. Lefebvre. (1988) Flame Stabilization Using Large Flameholders of Irregular Shape. Journal of Propulsion and Power, 4, 4.
Tang, C. L., Huang, Z. H., Jin, C., He, J. J., Wang, J. H., Wang, X. B., Miao, H. Y.(2008) Laminar Burning Velocities and Combustion Characteristics of Propane-hydrogen-air Premixed Flames. International Journal of Hydrogen Energy, 33, 4906.
Turns, S. R. (2000) An Introduction to Combustion : Concepts and Applications, Second Edition, McGraw-Hill, Boston, Chapter 1, Chapter 5, Chapter 8, & Chapter 9.
Wu, C. Y., Chao, Y. C., Cheng, T. S., Chen, C. P., Ho, C.T. (2009) Effects of CO Addition on the Characteristics of Laminar Premixed CH4/air Opposed-jet Flames. Combustion and Flame, 156, 362.
Wyse, C., Vininski, J., Watanabe, T. (2002) Cylinder, Purifier Technologies for Controlling Contamination in CO. Solid State Technology, 45, 125.
Yang, J. T., Yen, C. W., and Tsai, G. L. (1994) Flame Stabilization in the Wake Flow Behind a Slit V-Gutter. Combustion and Flame, 99, 288.
Zhen, H. S., Leung, C. W., Cheung, C. S. (2011) Emission of Impinging Swirling and Non-swirling Inverse Diffusion Flames. Applied Energy, 88, 1629.
Zhen, H. S., Cheung, C. S., Leung, C. W., Choy, Y. S. (2012) Effects of Hydrogen Concentration on the Emission and Heat Transfer of a Premixed LPG-hydrogen Flame. International Journal of Hydrogen Energy, 37, 6097.
陳靖瑋,2011,三環丙烷火焰暫態反應強度與流場之交互作用研究,國立台灣大學機械工程學系碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃俊傑(1999)。〈衝突的功能與化解:回應家庭中的循環性衝突〉。《應用心理研究》,3,8-10。
2. 黃俊傑(1999)。〈衝突的功能與化解:回應家庭中的循環性衝突〉。《應用心理研究》,3,8-10。
3. 張宏哲(2010)。〈長期照護正式和非正式體系之間關係的模式-研究和實務議題的探討〉,《社區發展季刊》,132,264-277。
4. 張宏哲(2010)。〈長期照護正式和非正式體系之間關係的模式-研究和實務議題的探討〉,《社區發展季刊》,132,264-277。
5. 馬先芝(2003)。〈照顧者負荷之概念分析〉,《護理雜誌》,50(2),82-86。
6. 馬先芝(2003)。〈照顧者負荷之概念分析〉,《護理雜誌》,50(2),82-86。
7. 陳仁惠、鄭仲興、方世杰(2005)。〈門診醫療服務品質與病患滿意度對於關係導向行為之影響〉,《醫護科技學刊》,7(2),187-202。
8. 陳仁惠、鄭仲興、方世杰(2005)。〈門診醫療服務品質與病患滿意度對於關係導向行為之影響〉,《醫護科技學刊》,7(2),187-202。
9. 林萬億(2010)。〈建構以家庭為中心、社區為基礎的社會福利服務體系〉,《社區發展季刊》,129,20-51。
10. 林萬億(2010)。〈建構以家庭為中心、社區為基礎的社會福利服務體系〉,《社區發展季刊》,129,20-51。
11. 邱怡玟(2004)。〈家庭變遷下老年人之長期照顧何去何從〉,《社區發展季刊》,106,176-186。
12. 邱怡玟(2004)。〈家庭變遷下老年人之長期照顧何去何從〉,《社區發展季刊》,106,176-186。
13. 沈慶盈(2005)。〈因應高齡化社會之福利政策方向〉,《社區發展季刊》,110,142-158。
14. 沈慶盈(2005)。〈因應高齡化社會之福利政策方向〉,《社區發展季刊》,110,142-158。
15. 王增勇(1997)。〈殘補式或普及式福利-台北市居家照顧政策的抉擇〉,《社區發展季刊》,80,213-232。