跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂信忠
研究生(外文):shinn jong leu
論文名稱:受質進料濃度之週期性改變對在連續攪拌槽反應器中帶質體微生物命運之影響:可變的質體損失機率情況
論文名稱(外文):Effect of Cycling of Feed Substrate Concentration on the Fate of Plasmid-Bearing Microorganisms in Continuous Culture : The Case of Variable Plasmid Loss Probability
指導教授:紀榮昌
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:76
中文關鍵詞:連續攪拌槽反應器受質進料濃度週期性改變帶質體微生物可變的質體損失機率
外文關鍵詞:CyclingVariable Plasmid Loss ProbabilityContinuous Culture
相關次數:
  • 被引用被引用:1
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文係針對考慮質體損失機率為可變且微生物對環境的改變會有調適的時間延遲,而進料受質濃度呈週期性改變的連續式攪拌槽反應器加以分析。由數值模擬所得的結果繪製出在稀釋速率D對週期P之平面上的操作圖,以顯示出兩種微生物最後仍會共存的操作條件。結果顯示當含質體與不含質體微生物之延遲時間相差足夠大時,這兩種微生物最後就有可能共存,且延遲時間差異愈大,呈現在D-P平面上之共存區也愈大;最大之進料受質濃度越高,共存區也愈大;在一週期中開與關的時間比太大或太小都會導致含質體微生物被沖盡,而該比值有一能得最大共存區的最佳值。文中並討論兩種微生物之最大比生長速率之比值對共存區的影響,以及在兩種微生物共存時含質體微生物所佔的質量分率受操作參數週期、稀釋速率、最大進料受質濃度和開與關之時間比的影響。
The continuous stirred tank reactor (CSTR) with cycling in the feed substrate concentration has been analyzed by numerical simulations for the case where the plasmid loss probability is variable and a difference in times for the plasmid-bearing and plasmid-free microorganisms to adapt to changing environment exists. Operating diagrams on the D (dilution rate) — P (period) plane are constructed to show the operating conditions under which these two microorganisms will ultimately coexist. It is found that both microorganisms can coexist ultimately if there is sufficient difference in the adaptation times, and the larger the difference is, the larger the coexistance region will be ; larger coexistance regions are also obtained for larger maximum feed substrate concentrations. Washout of the plasmid-bearing microorganisms occurs for the case where the on-off time ratio is either too larger or too small, and there exists an optimal ratio which yields the largest coexistance regions. The effect of the ratio of maximum specific growth rates on the coexistence region, and the effects of the operating parameters period, dilution rate, maximum feed substrate concentration and on-off time ratio on the ultimate mass fraction of the plasmid-bearing microorganisms are also discussed.
中文摘要…………………………………………………………vi
英文摘要………………………………………………………vii
目錄…………………………………………………………viii
圖目錄…………………………………………………………ix
表目錄…………………………………………………………xiv
第一章 緒論……………………………………………………1
第二章 系統方程式之推導及數值解…………………………7
2.1 系統之動態方程式……………………………………7
2.2 方程式之數值解……………………………………15
2.3 系統模擬與結果分析流程圖………………………22
第三章 結果與討論…………………………………………23
3.1開關時間比為1之情況…………………………….…25
3.1.1最大進料受質濃度對共存區之影響………………25
3.1.2延遲時間之比值對共存區之影響…………………25
3.1.3最大比生長速率之比值對共存區之影響…………27
3.1.4質體損失機率(定值)對共存區之影響…….………27
3.1.5操作參數Smax、D及P對R值的影響……………32
3.2開關時間比不為1之情況…………………………49
3.2.1開關時間比對共存區之影響…………….…………49
3.2.2操作參數Smax、D、P及開關時間比對R值的影 響…………………………………...………………51
3.3兩種微生物共存的參數範圍…………………………64
第四章 結論…………………………………………………66
符號說明………………………………………………………68
參考文獻………………………………………………………71
附錄…………………………………………………………75
1. Abulesz, E-M., and G. Lyberatos, “ Periodic Optimization of Continuous Microbial Growth Processes,” Biotechnol. Bioeng., 29, 1059-1065 (1987).
2. Bailey,J.E. and D.F. Oills, Biochemial Engineering
Fundamentals, 2nd ed.,McGraw-Hill,New York(1986),
Chap.13.
3. Caunt,P.,A.Impoolsup,and P.F. Greenfield, “A Method for
the Stabilisation of Recombinant Plasmids in Yeast,” J.
Biotechnol.,14,311-320(1990).
4. Chiam, H.F., and I.J. Harris, “ Application of a Noninhibitory Growth Model to Predict the Transient Response in a Chemostat,” Biotechnol. Bioeng., 25, 1613-1623 (1983).
5. Cunningham, A., “ The Impulse Response of Chlamydomonas
reinhardii in Nitrite-Limited Chemostat Culture,”
Biotechnol. Bioeng., 26, 1430-1435 (1984).
6. Harmon, J., S.A. Svoronos, and G. Lyberatos, “ Adaptive
Steady-State Optimization of Biomass Productivity in
Continuous Fermentors,” Biotechnol.Bioeng., 30, 335-344
(1987).
7. Harmon, L.J., S.A. Svoronos, and G. Lyberatos, “ A
New Method for the Adaptive Determination of Optimum
pH and Temperature,” Biotechnol. Bioeng., 33,1419-1424
(1989).
8. Huang, Y.L., C.h.Su, and S.T.Yang, “Kinetics and Modeling
Of GM-CSF Production by Recombinant Yeast in a Three-Phase
Fluidized Bed Bioreactor, ” Biotechnol. Bioeng., 53, 470-
477(1997).
9. Imanaka, T., and S. Aiba, “ A Perspective on the
Application of Genetic Engineering : Stability of
Recombinant Plasmid,” Ann.N.Y.Acad.Sci., 369,1-14 (1981).
10. Lauffenberger, D.A., “Bacteriocin Production as a
Method of Maintaining Plasmid-Bearing Cells in Continuous
Culture.” TIBTECH 5, 87-89 (1987).
11. Lee, S.B., D.D.Y.Ryu, R.Seigel, and S.H.Park, “Perform-
ance of Recombinant Fermentation and Evaluation of Gene
Expression Efficiency for Gene Product in Two-Stage Con-
tinuous Culture System, ”Biotechnol. Bioeng.,38,831-837
(1991)
12. Macdonald, N., “ Time Delay in Simple Chemostat Models,”
Biotechnol. Bioeng., 18, 805-812 (1976).
13. Mosrati, R., N. Nancib, and J. Boudrant, “ Variation
and Modeling of the Probability of Plasmid Loss as
a Function of Growth Rate of Plasmid-Bearing Cells
of Escherichia coli During Continuous Culture,”
Biotechnol. Bioeng., 41, 395-404 (1993).
14. O’Neil, D.G., and G. Lyberatos, “ Feedback
Identification of Continuous Microbial Growth Systems,”
Biotechnol. Bioeng., 28, 1323-1333 (1986).
15. Patnaik, P.R., “ Effect of Feed Cycling on Plasmid
Stabilization During Continuous Fermentation : The
Case of Variable Plasmid Loss Probability,” Can. J.
Chem. Eng., 72, 929-934 (1994).
16. Primrose, S.B., Molecular Biotechnology ,2nd ed.,Black
-well Scientific Publications Limited,Oxford(1991).
Chap2
17. Ryder, D.F., and D.Dibiasio, “ An Operational Strategy
for Unstable Recombinant DNA Culture,” Biotechnol.
Bioeng., 26, 942-947 (1984).
18. Satyagal, V.N., and P. Agrawal, “ Modeling the
Behavior of Plasmid-Harboring Cells in Nonselective
Media,” Biotechnol. Bioeng., 34, 265-272 (1989).
19. Shuler, M.L., and F. Kargi, Bioprocess Engineering ,
Prentice-Hall, Englewood Cliffs, N.J., (1992),(a)
Chap.13, (b)p.225,(c)p.192.
20. Stephens, M.L., and G. Lyberatos, “ Effect of Cycling
on the Stability of Plasmid-Bearing Microorganisms in
Continuous Culture,” Biotechnol. Bioeng., 31, 464-469
(1989).
21. Stephens, M.L., and G. Lyberatos, “ Effect of Cycling
on Final Mixed Culture Fate,” Biotechnol. Bioeng., 29,
672-678 (1987).
22. Satyagal, V.N., and Pramod Agrawal, “Modeling the
Behavior of Plasmid-Harboring Cells in Nonselective
Media,” Biotechnol. Bioeng.,34,265-272 (1989)
23. Weber, A.E., and Ka-Yiu San, “ Dynamics of Plasmid
Maintenance in a CSTR upon Square-Wave Perturbations in
the Dilution Rate,” Biotechnol. Bioeng., 34, 1104-1113
(1989).
24. Zhang, Z., J.M. Scharer, and Murray Moo-Young, “ Plasmid Instability Kinetics in Continuous Culture of
a Recombinant Saccharomyces cerevisiae in Airlift
Bioreactor,” J. Biotechnol., 55, 31-41 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top