跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.130) 您好!臺灣時間:2025/12/10 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊博智
研究生(外文):Po-chih Chuang
論文名稱:以生物毒性試驗探討廢水處理廠廢水之急毒性
論文名稱(外文):Investigation of the acute toxicity of wastewater from treatment plants using bioassay.
指導教授:陳健民陳健民引用關係
指導教授(外文):Chien-min Chen
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:86
中文關鍵詞:Microtox®減毒成效急毒性水質參數污水處理廠
外文關鍵詞:acute toxicityparameters of water qualitysewage treatment plantToxicity Reduction EfficiencyMicrotox®
相關次數:
  • 被引用被引用:10
  • 點閱點閱:5072
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Microtox®生物毒性檢測不同處理廠之急毒性,包含竹溪人工溼地處理系統、安平都市污水處理廠及校園生活污水處理廠。同時,本研究亦分析Microtox®檢測值與一般水質參數之相關性,以瞭解廢水生物毒性的主要來源。
實驗結果顯示,三個不同處理廠放流水樣之急毒性皆不具毒性反應,減毒成效達100%。竹溪人工溼地進流水樣之急毒性檢測發現,12月份第一次採樣,Microtox®毒性最大值TU50,5min為3.23,TU50,15min為41.66。在南市都市污水處理廠流水樣之急毒性檢測發現,毒性值TU50,5min最大值為33.3(9月份第一次採樣),毒性值TU50,15min(6月份第一次採樣)最大值為100。這些特性,仍須進行水樣定性分析,才能確定其毒性來源及突高之原因。在校園污水處理廠進流水樣之急毒性檢測發現,UV消毒渠中有可能因為消毒後,水中化合物於高氧化狀態下轉變為有毒性物質,可能造成比進流水樣更高之生物毒性,其中最高TU50,5min達25.12。此三座污水處理廠進流水之急毒性較高為南市都市污水處理廠,高毒性佔50%,次之為校園污水處理廠,高毒性佔23%,最低為竹溪人工溼地處理系統,高毒性佔0%。
結果顯示Microtox®檢測值與一般水質參數之相關性並不高,因為水樣來源通常不會是單一物質,組成複雜,要判斷水中毒性來源仍須配合不同之研究。因此,利用化學分析配合生物監測才能有效評估水質毒性對生物之影響。
The objectives of this study were intended to investigate the acute toxicity of different treatment plants, including a wetland treatment system, a sewage treatment plant and a school sewage treatment plant by the Microtox® tests. Moreover, analysis of the primary source of acute toxicity was determined by means of linear regression for several parameters of water quality and toxicity unit (TU) of Microtox® tests.
Results indicated that the acute toxicity of three different treatment plant effluent were zero, the reduction of acute toxicity were 100%. For the acute toxicity of influent from the wetland treatment system, we found that the maximum of acute toxicity in TU50,5min is 3.23, and the TU50,15min is 41.66 in the December first sampling. The acute toxicity of influent from the sewage treatment plant, the maximum of acute toxicity in TU50,5min is 33.3 in the September first sampling, and the maximum of acute toxicity in TU50,15min is 100 in the June first sampling. We need to qualitative analysis in order to decide the primary source of acute toxicity in the distinctive sampling. The acute toxicity of influent from the school sewage treatment plant, we assay that have the acute toxicity in the canal of UV disinfection even than the acute toxicity of influent, maybe produce from residue O3. The maximum of acute toxicity in TU50,5min is 25.12 in the canal of UV disinfection. The highest acute toxicity of influent in the three treatment plant is sewage treatment plant, the high toxicity is 50%;the higher acute toxicity of influent is school sewage treatment plant, the high toxicity is 23%;the last is wetland treatment system, the high toxicity is 0%.
Results indicated the correlation in several parameters of water quality and toxicity unit (TU) of Microtox® tests are bad, due to the sources of compose are not one single matter, so we need to co-operate different analysis to determine the sampling toxicity. So, using chemical assay harmony with biomonitoring test could evaluate the effluent of water tocicity in organism.
中文摘要 I
英文摘要 III
目錄 V
圖目錄 X
表目錄 XII

第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 4

第二章 文獻回顧 5
2-1 廢水中的毒性物質 5
2-2 生物毒性試驗 6
2-3 細菌性生物毒性檢驗方法 6
2-4 Microtox®生物毒性試驗之原理及毒性表示法 7
2-4-1 Microtox®生物毒性試驗之原理 7
2-4-2 Microtox®生物毒性試驗之毒性表示法 8
2-4-3 減毒效果表示法 9
2-5 Microtox®生物毒性試驗之特性 10
2-5-1 Microtox®之靈敏度 10
2-5-2 Microtox®與其他毒性試驗方法之相關性 11
2-5-3 Microtox®之再現性 11
2-5-4 Microtox®之即時與簡易性 12
2-5-5 Microtox®之實驗成本 13
2-6 Microtox®生物毒性試驗之影響因子及適用性 14
2-6-1 影響因子 14
2-6-2 Microtox®適用性 16
2-7 Microtox®應用於污水處理廠毒性檢測之研究 17
2-7-1 各種廢(污)水之Microtox®毒性 17
2-7-2 處理程序對廢水生物毒性之影響 18
2-7-3 Microtox®與廢水水質參數之相關性 20

第三章 研究方法 30
3-1 研究地區與系統概述 30
3-1-1 竹溪人工溼地系統簡介 30
3-1-2 台南市都市污水處理廠簡介 31
3-1-3 校園生活污水處理廠簡介 32
3-2 研究方法 32
3-3 採樣規劃 33
3-4 實驗設備與材料 33
3-4-1 實驗設備 33
3-4-2 實驗材料 34
3-5 分析方法 35
3-5-1 一般水質分析項目 35
3-5-2 Microtox®生物毒性試驗分析法 36

第四章 結果與討論 45
4-1 各廢污水處理廠之生物毒性 45
4-1-1 竹溪人工溼地系統之生物毒性 45
4-1-2 南市都市污水處理廠之生物毒性 46
4-1-3 校園生活污水處理廠之生物毒性 48
4-1-4 綜合討論 50
4-2 水質分析項目與Microtox®急毒性之相關性 51
4-2-1 竹溪人工溼地系統 52
4-2-2 南市都市污水處理廠 53
4-2-3 校園生活污水處理廠 54
4-2-4 綜合討論 54

第五章 結論與未來研究方向 67

參考文獻 69
[1] Liu M. C., Chen C.-M., Cheng H. Y., Chen H. Y., Su Y. C. and Hung T. Y., 2002. Toxicity of Different Industrial Effluents in Taiwan:A Comparison of the Sensitivity of Daphnia similis and Microtox. Environ Toxicol.
[2] Johnsona A. C., Aernib H. R., Gerritsenc A., Gibert M., Giger W., Hylland K., Jűrgens M., Nakari T., Pickering A., Suter M. F. F., Svenson A. and Wettstein F. E., 2005. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research. 39 : 47-58.
[3] Hao O. J., Shin C. J., Lin C. F., Jeng F. T. and Chen Z. C., 1996. Use of Microtox Tests for Screening Industrial Wastewater Toxicity, Water Science and Technology. 34(10):43-50.
[4] 李季眉、張怡塘、姜昀先。1998。毒性減量-評估與管制。國立編譯館。
[5] Gutierrez M., Etxebarria J., Fuentes L. de las., 2002. Evaluation of wastewater toxicity:comparative study between Microtox and activated sludge oxygen uptakw inhibition. Water research. 36 : 919-924.
[6] Elena F., Murat J.-C. and Isabel V., 2005. Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target . Chemosphere. 58:551-557.
[7] Slabbert J. L. and Venter E. A., 1999. Biological Assays for Aquatic
Toxicity Testing. Water Science and Technology. 39(10) : 367-373.
[8] Kirkwood A. E., Nalewajko C. and Fulthorpe R. R., 2005. The impacts of cyanobacteria on pulp-and-paper wastewater toxicity and biodegradation of wastewater contaminants. Can J Microbiol. 51(7):531-540.
[9] Mowat F. S. and Bundy K. J., 2002. Experimental and mathematical/computational assessment of the acute toxicity of chemical mixtures from the Microtox® assay. Advances in Environmental Research, 6:547-558.
[10] Federica A., Anabela C., Tiziana C., Roberta G., Marco R. and Antonella I., 2003. Optimisation of a microbial bioassay for contaminated soil monitoring:bacterial inoculum standardisation and comparison with Microtox® assay . Chemosphere. 53:889-897.
[11] Elnabarawy W. T., Robideau R. R. and Beach S. A., 1988. Comparison of three rapid toxicity test procedures:Microtox, Polytox, and activated sludge respiration. Toxicity Assess. 3:361-370.
[12] Chial B. and Persoone G., 2003. Cyst-based toxicity tests. XI. Influence of the type of food on the intrinsic growth rate of the rotifer Brachionus calyciflorus in short-chronic toxicity tests . Chemosphere. 50:365-372.
[13] Gary S. Caldwell, Matthew G. Bentley and Peter J. W. Olive., 2003. The use of a brine shrimp (Artemia salina) bioassay to assess the toxicity of diatom extracts and short chain aldehydes . Toxicon. 42:301-306.
[14] Kim K. T., Lee Y. G. and Kim S. D., 2006. Combined toxicity of copper and phenol derivatives to Daphnia magna:Effect of complexation reaction . Environment International. 32:487-492.
[15] Jonathan D. M., Jerry L. Farris and Michael J. L., 2006. Interaction of chemical cues from fish tissues and organophosphorous pesticides on Ceriodaphnia dubia survival . Environmental Pollution. 141:90-97.
[16] Grade R., Gonzalez-Valero J., Höcht P. and Pfeifle V., 2000. A higher tier flow-through toxicity test with the green alga Selenastrum capricornutum . The Science of The Total Environment. 247:355-361.
[17] Lussier S. M., Gentile J. H. and Walker J., 1985. Acute and chronic effects of heavy metals and cyanide on Mysidopsis bahia(Crustacea : ysidacea). Aquat. Toxicol. 7:25-35.
[18] Pawlowski S., Van A. R., Tyler C. R. and Braunbeck T., 2004. Effects of 17?ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay . Ecotoxicology and Environmental Safety. 57:330-345.
[19] Peltier W. H. and Weber C. I., 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms(3rd ed.). EPA-600/4-85/013. U.S. EPA, Cincinnati. OH.
[20] 吳先琪。2000。廢水微生物學。國立編譯館。第508-523 頁。
[21] Al-Muzaini S., Beg M. U., Al-Mutairi M. and Al-Mullalhah A., 1995. Seawater quality at industrial effluents discharge zone. Wat. Sci. Tech. 32(11):21-26.
[22] Boluda R., Quintanilla J. F., Bonilla J. A., Saez E. and Gamon M., 2002. Application of tne Microtox test and pollution indices to the study of water toxicity in the Albufera Natural Park(Valencia, Spain). Chemosphere. 46:355-369.
[23] Marinel. la Farré, García María-Jesús, Lluis Tirapu, Antoni Ginebreda and Damià Barceló. 2001. Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays . Analytica Chimica Acta. 427:181-189.
[24] Eliasen R., King P. H. and Linsley R. K., 1991. Wastewater engineering treatment, disposal, and reuse, 3rd Ed, McGraw-Hill Book Co, pp. 101-105.
[25] Elena Fulladosa, Murat Jean-Claude and Villaescusa Isabel, 2005. Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target. Chemosphere. 58:51-57
[26] Bulich A. A., 1982. A practical and reliable method for monitoring the toxicity of aquatic sample. Process Biochem, pp. 45-47.
[27] Coleman R. N. and Qureshi A. A., 1985. Microtox and Spirillum volutans tests for assessing toxicity of environmental samples. Bull. Environ. Contam. Toxicol. 35:443-451.
[28] Brouwer H., Murphy T. and McArdle L., 1990. A sediment-contact bioassay with Photobacterium phosphoreum. Environ. Toxicol. Chem. 9:1353-1358.
[29] Asami M., Suzuki N. and Nakanishi J., 1996. Aquatic toxicity emission from Tokyo:Wastewater measured using marine luminescent bacterium, Photobacterium phosphoreum. Water Science and Technology. 33(6):121-128.
[30] 黃昭斌。1996。以微生物毒性試驗法評估工業廢水毒性之研究。國立中興大學環境工程研究所碩士論文。
[31] Blum D. J. W., and Speece R. E., 1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. J. Water Pollut. Control Fed. 63(3): 319-328.
[32] Margaret W. T., Tommy R. S., William H. Van Der Schalie and Gerald R. L., 1995. A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ. Toxicol. and chem. 14(5):907-915.
[33] Mount D. I. and Norberg T. J., 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3:425-434.
[34] Anklry G. T., Katko A. and Arthur J. W., 1990. Identification of ammonia as an important sediment-associated toxicant in the lower Fox River and Green Bay, Wisconsin. Environ. Toxicol. Chem. 9 :313-322.
[35] Degraeve G. M., Overcast R. L. and Bergman H. L., 1980. Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota. Arch. Environ. Contam. Toxicol. 9:543-555.
[36] Miller D. C., Poucher S., Cardin J. A. and Hansen D., 1990. The acute and chronic toxicity of ammonia to a marine fish and a mysid. Arch. Environ. Contam. Toxicol. 19:40-48.
[37] William H. Schalie van der, James R. R. and Gargan T. P., 2006. Biosensors and Bioelectronics.
[38] Beaubien A., LaPierre L., Bouchard A. and Jolicoeur C., 1986. A multispecies toxicity assessment procedure using flow microcalorimetry:Comparison with other evaluation methods. Toxicity Assess. 1:187-200.
[39] Ewell W. S., Gorsuch J. W., Kringle R. O., Robillard K. A. and Spiegel R. C., 1986. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environ. Toxicol. Chem. 5:831-840.
[40] Janssen C. R. and Persoone G., 1993. Rapid toxicity screening tests for aquatic biota : 1. Methodology and experiments with Daphnia magna. Environ. Toxicol. Chem. 12:711-717.
[41] Walker J. D., 1988. Relative sensitivity of algae, bacteria, invertebrates, and fish to phenol:Analysis of 234 tests conducted for more than 149 species. Toxicity Assess. 3:415-447.
[42] Millemann R. E., Birge W. J., Blank J. A., Cushman R. M., Daniels K. L., Franco P. J., Giddings J. M., Marthy J. R. and Stewart A. J., 1984. Comparative toxicity of an aquatic organism of components of coal-derived synthetic fuels. Trans. Am. Fish. Soc. 113:74-85.
[43] LeBlanc G. A., 1980. Acute toxicity of priority pollutants to water flea(Daphnia magna). Bull. Environ. Contam. Toxicol. 24:684-691.
[44] Gersich F. M., Blanchard F. A., Applegath S. L. and Park C. N. 1986. The precision of daphnid(Daphnia magna Straus, 1820)static acute toxicity tests. Arch. Environ. Contam. Toxicol. 15:741-749.
[45] Cowgill U. M., Takahashi I. T. and Applegath S. L., 1985. A comparison of four benchmark chemicals on Daphnia magna and Ceriodaphnia dubia-affinis tested at two different temperatures. Environ. Toxicol. Chem. 4:415-422.
[46] Hermens J., Canton H., Steyger N. and Wegman R., 1984. Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquat. Toxicol. 5:312-322.
[47] Cowgill U. M. and Milazzo D. P., 1991. The sensitivity of Ceriodaphnia dubia and Daphnia magna to seven chemicals utilizing the three-brood test. Arch. Environ. Contam. Toxicol. 20:211-217.
[48] Shigeoka T., Sato Y., Takeda Y., Yoshida K. and Yamuchi F., 1988. Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ. Toxicol. Chem. 7:847-854.
[49] Ryon M. G., 1987. Water quality criteria for 2,4,6-trinitrontoluene(TNT). AD-ORNL-6304. Oak Ridge National Laboratory, Oak Ridge, TN.
[50] Pickering Q. H., 1966. Acute toxicity of alkyl benzene sulfonate and linear alkylate sulfonate to the eggs of the fathead minnow. Pimephales promelas. Air Water Pollut. 10:385-391.
[51] Phipps, G. L., Holcombe G. W. and Fiandt J. T., 1981. Acute toxicity of phenol and substituted phenols to the fathead minnow. Bull. Environ. Contam. Toxicol. 26:585-593.
[52] Mayes M. A., Alexander H. C. and Dill D. C., 1983. A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests. Bull. Environ. Contam. Toxicol. 31:139-147.
[53] McFeters G. A., Bond P. J., Olson S. B. and Tchan Y. T., 1983. A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res. 17:1757-1762.
[54] Dutka B. J., Nyholm N. and Peterson J., 1983. Comparison of several microbial toxicity screening tests. Water Res. 17:1363-1368.
[55] Curtis C., Lima A., Lozano S. J. and Veith G. D., 1982. Evaluation of a bacterial bioluminescence bioassay as a method for predicting acute toxicity of organic chemicals to fish. In J.G. Pearson, R.B. Foster, and W.E. Bishop, eds., Aquatic Toxicology and Hazard Assessment-Fifth Symposium. STP 766. American Society of Testing and Materials, Philadelphia, PA, pp. 170-178.
[56] Ghosh S. K. and Doctor P. B., 1992. Toxicity screening of phenol using Microtox. Environ. Toxicol. Water Qual. 7:157-163.
[57] Bailey H. C. and Lin D. H. W., 1980. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism. In J.C. Eaton, P.R. Parish and A.C. Hendricks, eds., Aquatic Toxicology and Hazard Assessment-Third Symposuim. STP 707. American Society for Testing and Materials, Philadelphia, PA, pp. 202-215.
[58] Ryon M. G., 1987. Water quality criteria for 2,4,6-trinitrontoluene(TNT). AD-ORNL-6304. Oak Ridge National Laboratory, Oak Ridge, TN.
[59] Bailey H. C., 1982. Development and testing of a laboratory model ecosystem for use in evaluating biological effects and chemical fate of pollutants. In J.G. Pearson, R.B. Foster, and W.E. Bishop, eds., Aquatic Toxicology and Hazard Assessment-Fifth Symposium. STP 766. American Society for Testing and Materials, Philadelphia, PA, pp. 221-233.
[60] Liu D. H. W., Sapangford R. J., Bailey H. C., Javitz H. S. and Jones D. C. L., 1984. Toxicity of TNT wastewaters to aquatic organisms : Acute toxicity of LAP wastewater and 2,4,6-trinitrotoluene. Final Report. U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD.
[61] Won W. D., DiSalvo L. H. and Ng J., 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Bilo. 31:576-580.
[62] Smock L. A., Stoneburner D. L. and Clark J. R., 1976. The toxic effects of trinitrotoluene and its degradation products on two species of algae and the fathead minnow. Water Res. 10:537-543.
[63] Hankenson K. and Schaeffer D. J., 1991. Microtox assay of trinitrotoluene, diaminotoluene, and dinitromethylaniline mixtures. Bull. Environ. Contam. Toxicol. 46:550-553.
[64] Hsieh Chi-Ying, Tsai Meng-Hsiun, Ryan David K. and Pancorbo Oscar C., 2004. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Science of The Total Environment. 320:37-50 .
[65] 陳仁全。1994。工業廢水生物特性探討。國立台灣大學環境工程學研究所碩士論文。
[66] Logue C. L., koopman B., Brown G. K. and Bitton G., 1989. Toxicity Screening in a large, Municipal Wastewate System. J. Water Pollut. Control Fed. 61(5):632-640.
[67] Plotkin S. and Ram N. M., 1984. Multiple bioassays to assess the toxicity of a sanitary landfill. Arch. Environ. Contam. Toxicol. 13:197-206.
[68] Reteuna C., Vasseur P. and Cabridenc R., 1989. Performances of three bacterial assays in toxicity assessment. Microbiologia. 188/189:149-153.
[69] Hao Xu and Dutka B. J., 1987a. ATP-TOX system-A new, rapid, sensitive bacterial toxicity screening system based on the determination of ATP. Toxicity Assessment. 2:149-166.
[70] Hao Xu and Dutka B. J., 1987b. Technical Methods Section:ATP-TOX system : A bacterial toxicity screening procedure. Toxicity Assessment. 2:357-365.
[71] Schiliro T, Pignata C, Fea E. and Gilli G., 2004. Toxicity and estrogenic activity of a wastewater treatment plant in Northern Italy. Arch Environ Contam Toxicol. 47(4):456-462.
[72] Efthimia C., Evangelos P. and Catherine T., 2002. Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox® bioassay results of pollution gradient areas in eastern Mediterranean (Greece) . Environmental Pollution. 119:141-149.
[73] Nicoletta C., Silvia C., Bianca M. P., Massimiliana P., Federica A., Tiziana C. and Nicola C., 2005. Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy) . Microchemical Journal. 79:243-248.
[74] Fulladosa E., Murat J. C., Martínez M. and Villaescusa I., 2005. Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria . Chemosphere. 60:43-48.
[75] Bastian K. C. and Alleman J. E., 1998. Microtox™ characterization of foundry sand residuals. Waste Management. 18:227-234.
[76] Munkittrick K. R, Power E. A. and Sergy G. A., 1991. The relative sensitivity of Microtox, daphnid, rainbow trout and fathead minnow acute lethality tests. Environ. Toxicol. Water Qual. 6:35-62.
[77] Microbics Corp. 1998. Microtox® Test Manual. Carlsbad, CA, USA.
[78] Backhaus T. and Grimme L. H., 1999. Water quality for agriculture. FAO. Irrigation and drainage paper no 29, Roma, pp. 174.
[79] Landis W. G. and Yu M. H., 1995. Introduction to environmental toxicology:Impacts of chemicals upon ecological systems. Lewis Publishers, Boca Raton, FL.
[80] Campisi T., Abbonsanzi F., Casado-Martinez C., Delvalls T. A., Guerra R., Iaconsini A., 2005. Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test. Chemosphere. 60:9-15.
[81] Yin Latt Phyu, Warne M. St. J. and Lim R. P., 2005, Effect of river water, sediment and time on the toxicity and bioavailability of molinate to the marine bacterium Vibrio fischeri (Microtox). Water Research, 39:2738-2746.
[82] 陳重元、林志高、高正忠、張鎮南、林國清、葉瑞堂、鄭啟裕。1994。生物毒性篩選試驗研究。國立交通大學環境工程研究所。
[83] Miller W. E., Peterson S. A., Green J. C. and Callahan C. A., 1985. Comparative toxicology of laboratory organisms for assessing hazardous waste sites. J. Environ. Qual. 14:29-32.
[84] Leblanc G. A., 1984. Insterspecies relationships in acute toxicity of chemicals to aquatic organisms. Environ. Toxicol. Chem. 3:47-60.
[85] Thomas J. M., Skalski J. R., Cline J. F., McShane M. C., Miller W. E., Peterson S. A., Callahan C. A. and Green J. C., 1986. Characterization of chemical waste site contamination and determination of its extent using bioassays. Environ. Toxicol. Chem. 5:487-501.
[86] Turbak S. C., Olaon S. B. and McFeters G. A., 1986. Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res. 1:91-96.
[87] Blaise C., Legalt R., Bermingham N., Coillie R. Van and Vasseur P., 1986. A sample microplate algal assay technique for aquatic toxicity assessment. Toxicity Assess. 1:261-281.
[88] Pickering Q. H., Carle D. O., Pilli A., Willingham T. and Lazarchak J. M., 1989. Effects of pollution on freshwater organisms. J. Water Pollut. Control Fed. 61:998-1401.
[89] Nacci D., Jackim E. and Walsh R., 1986. Comparative evaluation of three rapid marine toxicity tests : Sea urchin early embryo growth test, sea urchin sperm cell toxicity test, and Microtox. Environ. Toxicol. Chem. 5:521-525.
[90] Tarkpea M., Hansson M. and Samuelsson B., 1986. Comparison of the Microtox test with the 96-hour LC50 test for the harpacticoid Nitocra spinipes. Ecotoxicol. Environ. Saf. 11:127-143.
[91] Greene J. C., Miller W. E., Debacon M. K., Long M. A. and Bartels C. L., 1985. Comparison of three microbial assay procedures for measuring toxicity of chemical residues. Arch. Environ. Contam. Toxicol. 14:659-667.
[92] Walker J. D., 1987. Effects of chemicals on microorganisms. J. Water Pollut. Control Fed. 58:614-625.
[93] Elnabarawy M. T., Welter A. N. and Robideau R. R., 1987. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ. Toxicol. Chem. 5:393-398.
[94] Hall W. S., Paulson R. L., Hall L. W. Jr. and Burton D. T., 1986. Acute toxicity of cadmium and sodium pentachlorophenate to daphnids and fish. Bull. Environ. Contam. Toxicol. 37:308-316.
[95] Sloof W., Canton J. H. and Hermens J. L. M., 1983. Comparison of the susceptibility of 22 freshwater species to 15 compounds:I.(Sub)Acute toxicity tests. Aquat. Toxicol. 4:113-128.
[96] U. S. Environmental Protection Agency. 1984. Ambient water quality criteria for cadmium. EPA 440/5-84-032. Office of water Regulations and Standards, Criteria and Standards Division, Washington, DC.
[97] Burton W. D., 1992. An evaluation of aquatic toxicity data with a population growth model for application to environmental hazard assessment. Gov. Rep. Announce. 10:1-157.
[98] Robert M. H. Jr., Warinner J. E., Tsai C. F., Wright D. and Cronin L.E., 1982. Comparison of estuarine species sensitivities to three toxicants. Arch. Environ. Contam. Toxicol. 11:681-692.
[99] Nimmo D. R., Bahner L. H., Rigby R. A., Sheppard J. M. and Wilson A. J., 1977. Mysidopsis bahia:An estuarine species suitable for life-cycle toxicity tests to determine the effects of a pollutant. In F.L. Mayer and J.L. Hamelink, eds., Aquatic Toxicology and Hazard Evaluation-First Symposium. STP 634. American Society for Testing and Materials, Philadelphia, PA, pp. 109-116.
[100] Voyer R. A. and Modica G., 1990. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia Molenock. Arch. Environ. Contam. Toxicol. 19:124-131.
[101] Awong J., Bitton G., Koopman B. and Morel J. L., 1989. Evaluation of ATP photometer for toxicity testing using Microtox luminescent bacterial reagent. Bull. Environ. Contam. Toxicol. 43:118-122.
[102] Yen N. T., Oanh N. T. K., Reutergardh L. B., Wise D. L. and Lan N. T. T., 1996 . An intergrated waste survey and environmental effects of COGIDO, a bleached pulp and paper mill in vietnam, on the receiving waterbody, Resources Conservation and Recycling 18(1-4), pp. 161-173.
[103] Nguyen T. K. O. and Bengtsson B. E., 1995. Toxicity to Microtox, Micro-Algae and Duckweed of effluents from the Bai Bang PaperCompany (BAPACO), a vietnamese bleached kraft pulp and papermill, Environmental Pollution. 90(3):391-399.
[104] Levi Y., Henriet C., Coutant J. P., Lucas M. and Leger G., 1989. Monitoring acute toxicity in rivers with the help of the Microtox test. Water Supply. 7:25-31.
[105] Hao O. J., Shin Chen-Jen, Lin Cheng-Fang, Jeng Fu-Tien and Chen Zen-Chyuan, 1996. Use of Microtox tests for screening industrial wastewater toxicity. Wat. Sci. Tech. 34(10):43-50.
[106] Asami M., Suzuki N. and Nakanishi J., 1996. Aquatic toxicity emission from Tokyo:Wastewater measured using marine luminescent bacterium, Photobacterium phosphoreum, Water Science and Technology. 33(6):121-128.
[107] Eckenfelder J. W. W. and Musterman J. L., 1992 . Activated sludge treatment of industrial wastewater, Technomic Publishing Company. Lancaster, pp. 40-64.
[108] Eckenfelder W. W. and Landford P. W., 1991. Toxicity reduction in industrial and municipal effluents-the state of the art, International Journal Environment and Pollution, 1(1/2):29-43.
[109] Bleckmann C. A., Rabe B., Edgmon S. J. and Fillingame D., 1995. Aquatic Toxicity variability for fresh and saltwater species in refinery wastewater effluent, Environmental Toxicology and Chemistry. 14(7):1219-1223.
[110] Cristiano V. M. Arau, Renato B. Nascimento, Carla A. Oliveira,
Uwe J. Strotmann, Eduardo M. da Silva, 2005. The use of Microtox to assess toxicity removal of industrial effluents from the industrial districtof Camacari (BA, Brazil). Chemosphere. 58:1277-1281.
[111] 邱舜稜。2002。以Microtox檢測方法評估實際廢水生物毒性之研究。國立中央大學環境工程研究所碩士論文。
[112] Johnson I., Hutchings M., Benstead R., Thain J. and Whitehouse P., 2004. Bioassay selection, experimental design and quality control/assurance for use in effluent assessment and control. Ecotoxicology. 13(5):437-47.
[113] Claudia Z., Donatella F., Annamaria B., Paola P., Carlo R., Licia G., Filomena D. C. and Silvano M., 2005. Toxicity and genotoxicity of surface water before and after various potabilization steps . Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 587:26-37.
[114] Gutierrez M., Etxebarria J., Fuentes L. de las., 2002. Evaluation of wastewater toxicity:comparative study between Microtox and activated sludge oxygen uptakw inhibition. Water research. 36:919-924.
[115] 林怡青。1996。微生物毒性試驗法應用在工業廢水處理程序之評估。國立中興大學環境工程學系碩士論文。
[116] Phyu Y. L., St. J., Warne M. and Lim R. P., 2005. Effect of river water, sediment and time on the toxicity and bioavailability of molinate to the marine bacterium Vibrio fischeri (Microtox). Water Res. 39(12):2738-2746.
[117] Boluda R., Quintanilla J. F., Bonilla J. A., Saez E. and Gamon M., 2002. Application of tne Microtox test and pollution indices to the study of water toxicity in the Albufera Natural Park(Valencia, Spain). Chemosphere. 46:355-369.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊