跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳明樺
研究生(外文):Ming-HuaWu
論文名稱:利用有機/無機多層量子井結構製備高效率白光有機發光二極體
論文名稱(外文):The fabrications of high efficient white-light OLEDs by using organic/inorganic multiple quantum wells
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:80
中文關鍵詞:有機發光二極體
外文關鍵詞:white organic light-emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為製作高效率白光有機發光二極體元件 (WOLEDs)。我們主要選用兩種有機材料 C545T 和 TPBi 與一無機材料 NaF 分別插入由 NPB 有機材料為主的電洞傳輸層,並建立一具有多層量子井結構的白光有機發光二極體,如:NPB/C545T/NPB/C545T、NPB/TPBi/NPB/TPBi 或 NPB/NaF/NPB/NaF/NPB 等量子井結構。我們發現相較於未具有多層量子井結構的 WOLEDs,具有多層量子井結構的 WOLEDs 在元件效率上有明顯地提升。此元件效率的提升主要來自於電洞 - 電子注入量的平衡。
此論文主要分為兩部分,第一部分為研究分別利用 C545T、TPBi 和 NaF 三種材料所建立的多層量子井結構在不同層數的量子井與不同厚度下對元件光 – 電特性的影響。第二部分為主要探討利用紫外光能譜分析儀 (UPS) 和空間電荷限制電流法 (SCLC measurement) 來分析不用性質如在電洞傳輸層上的能階、遷移率、表面結構等變化,並進一步研究探討其電荷注入和傳輸機制以及對元件特性影響之原因。
由實驗結果發現:由紫外光能譜分析儀得知,分別將 C545T、TPBi、NaF 三種材料蒸鍍於 NPB 時,其兩種材料的介面之 HOMO 能帶會彎曲且形成量子井。由空間電荷限制電流法,我們可以發現具有量子井結構的單電洞元件上,其電洞的遷移率下降亦能有效地減少電洞的注入。因此,其電洞的注入量的減少而達到電洞 – 電子載子的平衡,進一步達到高效率白光有機發光二極體。其中,最佳元件在電流效率上有 216 % 的增進。
In this thesis, we focused on the fabrication with high efficiency white organic light-emitting diodes (WOLEDs). We adopted two organic materials, 2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H, 5H,11H-10- (2-benzothiazolyl)quinolizino[9,9a,1gh]coumarin (C545T), 2,2',2" -(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), and one inorganic material, NaF , to insert into NPB, respectively, forming the multiple quantum-well-like (MQW) structures consisting of the alternative layer of NPB/C545T/NPB/C545T, NPB/TPBi/NPB/TPBi or NPB/NaF/NPB/NaF. Compared with the current efficiency without MQW structure, that of the devices with MQW structure had been obviously improved. Such an improvement in the device performance is attributed to the improved hole-electron balance, which can be further attributed to the introduction of the MQW structure.
In the first part of this search, we reported the device with different materials, MQW number and thickness to investigate the optical and electrical characteristics of the OLEDs. At the second part, we used Ultraviolet Photoelectron Spectroscopy (UPS) and space-charge-limited current (SCLC) measurement to analyze various properties, like energy level, mobility, surface structure in HTL etc, and study the hole injection、transport mechanism and effects on the characteristics of the devices.
In this study, from UPS spectra, we found that evaporating C545T, TPBi, and NaF, respectively, on the NPB film would induce the shift of energy level at the organic material/NPB interface, and quantum wells were formed. The reduction of hole mobility in hole-only devices with quantum-well-like structures has been investigated by SCLC measurement. Therefore, the decreasing of hole injection was contributed to the reduction of hole mobility, which also achieved the hole-electron balance and demonstrated the highly-efficient white organic light-emitting diodes. Devices with the best device performance have 216 % improved in current density.
Table of Contents
List of Figures.................................. XII
List of Tables................................... XV

Content
Chapter 1...........................................1
1-1 Introduction.................................... 1
1-2 The Literature Review of MQWS................... 2
1-3 The Motivation of this Research................. 5
Chapter 2 Theory and Literature Review.............. 8
2-1 Basic Concepts of OLEDS......................... 8
2-1-1 Structures of OLEDS........................... 8
2-1-2 Principles of OLED Operation.................. 9
2-2 The Luminescent Principle of OLEDS.............. 11
2-2-1 Photoluminescence and Electroluminescence..... 11
2-2-2 Energy Transfer............................... 12
2-3 Carrier Injection............................... 13
2-4 Carrier Transport............................... 15
2-5 Materials of Anode and Cathode.................. 17
2-6 Emitting Layer.................................. 18
Chapter 3 Fabrication and Measurement Setups in OLEDS ................25
3-1 Thermal evaporating system...................... 25
3-2 Substrate cleaning procedures................... 26
3-3 The preparation of solution-processed emitting materials ............................................27
3-4 OLEDS configuration............................. 27
3-5 OLEDS fabrication............................... 28
3-6 Materials....................................... 29
3-7 Measurement of OLEDS characteristics............ 29
Chapter 4 Results and Discussion.................... 34
4-1 Part I: Fabricate Highly Pure WOLEDS............ 35
4-2 Part II: WOLEDS with C545T MQW Structures....... 41
4-3 Part III: WOLEDS with TPBI MQW Structures....... 50
4-4 Part IV: WOLEDS with NAF MQW Structures .........56
4-5 Part V:Space-charge-limited current (SCLC) Measurement ............................................63
4-6 Part VI:Ultraviolet Photoelectron Spectroscopy (UPS) Measurement......................................... 69
Chapter 5 Conclusions and Future Work............... 76
5-1 Conclusions..................................... 76
5-2 Future Work..................................... 77
Reference........................................... 78
1. A. Bernanose, M. Comte and P. Vouaux, Journal of chemical Physics 50, 64 (1953).
2. A. Bernanose and P. Vouaux, Journal of chemical Physics 50, 261 (1953).
3. E. Gurnee and R. Fernandez, US Patent 3 172 862 (1965).
4. W. Digby and M. Schadt, US Patent 3 621 321 (1971).
5. R. Partridge, US Patent 3 995 299 (1976).
6. D. Braun and A. J. Heeger, Applied Physics Letters 58 (18), 1982-1984 (1991).
7. J. P. van der Ziel, R. Dingle, R. C. Miller, W. Wiegmann and J. W. A. Nordland, Applied Physics Letters 26 (8), 463-465 (1975).
8. M. Pope and C. Swenberg, Electronic processes in organic crystals and polymers. (Oxford University Press, USA, 1999).
9. F. F. So, S. R. Forrest, Y. Q. Shi and W. H. Steier, Applied Physics Letters 56 (7), 674-676 (1990).
10. F. F. So and S. R. Forrest, Physical Review Letters 66 (20), 2649 (1991).
11. J. Huang, K. Yang, Z. Xie, B. Chen, H. Jiang and S. Liu, Applied Physics Letters 73 (23), 3348-3350 (1998).
12. T. J. Park, W. S. Jeon, J. W. Choi, R. Pode, J. Jang and J. H. Kwon, Applied Physics Letters 95 (10), 103303-103303 (2009).
13. Y. Qiu, Y. Gao, P. Wei and L. Wang, Applied Physics Letters 80 (15), 2628-2630 (2002).
14. S.-H. Yang, B.-C. Hong and S.-F. Huang, Journal of Applied Physics 105 (11), 113105-113107 (2009).
15. M. A. Baldo, D. F. O. Brien, M. E. Thompson and S. R. Forrest, Physical Review B 60, 14422 (1999).
16. M. A. Baldo, D. F. O. Brien, Y. You, A. Shoustikvo, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998).
17. D. S. Leem, H. D. Park, J. W. Kang, J. H. Lee, J. W. Kim and J. J. Kim, Applied Physics Letters 91, 011113 (2007).
18. M. T. Hsieh, C. C. Chang and J. F. Chen, Applied Physics Letters 89, 103510 (2006).
19. C. W. Tang and S. A. VanSlyke, Applied Physics Letters 51 (12), 913-915 (1987).
20. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest,
79
Applied Physics Letters 75 (1), 4-6 (1999).
21. L. J. Rothberg and A. J. Lovinger, Journal of Materials Research 11, 3174 (1991).
22. S. A. Chen and T. C. Kuo, thesis of Tsing Hua university (1999).
23. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature 430, 750 (2000).
24. S. Miyata and H. Nalwa, Organic electroluminescent materials and devices. (CRC, 1997).
25. U. Wolf, V. I. Arkhipov and H. B sler, Physical Review B 59 (11), 7507 (1999).
26. Z. Kafafi, Organic electroluminescence. (CRC, 2005).
27. M. Pope, H. P. Kallmann and P. Magnante, The Journal of Chemical Physics 38 (8), 2042-2043 (1963).
28. M. Sugimoto, S. Sakaki, K. Sakanoue and M. Newton, Journal of Applied Physics 90, 6092 (2001).
29. F. Nuesch, E. Forsythe, Q. Le, Y. Gao and L. Rothberg, Journal of Applied Physics 87, 7973 (2000).
30. W. Choi, V. Ng, S. Ng, H. Thio, Z. Shen and W. Li, Journal of Applied Physics 86, 1398 (1999).
31. R. Curry and W. Gillin, Journal of Applied Physics 88, 781 (2000).
32. M. Mason, L. Hung, C. Tang, S. Lee, K. Wong and M. Wang, Journal of Applied Physics 86, 1688 (1999).
33. M. Wijesundara, Y. Ji, B. Ni, S. Sinnott and L. Hanley, Journal of Applied Physics 88, 5004 (2000).
34. E. Haskal, A. Curioni, P. Seidler and W. Andreoni, Applied Physics Letters 71, 1151 (1997).
35. L. Hung, L. Liao, C. Lee and S. Lee, Journal of Applied Physics 86, 4607 (1999).
36. L. S. Hung, Thin Solid Films 363, 47 (2000).
37. R. Jordan, A. Dodabalapur, M. Strukelj and T. Miller, Applied Physics Letters 68, 1192 (1996).
38. Y. Tsai and J. Jou, Applied Physics Letters 89, 243521 (2006).
39. L. Rothberg and A. Lovinger, Journal of Materials Research 11 (12), 3174 (1996).
40. K. F. Li, K. W. Cheah, K. T. Yeung, Y. K. Cheng, Y. S. Wu and C. H. Chen, Proceedings of IDMC'05, P.136 (2005).
41. Z.-y. Xie and et al., Chinese Physics Letters 16 (2), 149 (1999).
42. Y. Divayana, B. J. Chen, X. W. Sun and K. S. Sarma, Applied Physics Letters 88 (8), 083508-083503 (2006).
80
43. Y. Chen, P. Kao and S. Chu, Optics Express 18 (2002), 167-173.
44. P. W. M. Blom, M. J. M. de Jong and J. J. M. Vleggaar, Applied Physics Letters 68 (23), 3308-3310 (1996).
45. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras and P. J. Brock, Applied Physics Letters 74 (8), 1132-1134 (1999).
46. R. Agrawal, P. Kumar, S. Ghosh and A. K. Mahapatro, Applied Physics Letters 93 (7), 073311-073313 (2008).
47. M. A. Lampert and P. Mark, Current Injection in Solids (1970).
48. G. G. Malliaras, J. R. Salem, P. J. Brock and C. Scott, Physical Review B 58, R13411 (1998).
49. T. Y. Chu and O. K. Song, Applied Physics Letters 90, 203512 (2007).
50. Y. Divayana, B. J. Chen, and X. W. Sun, K. S. Sarma, APPLIED PHYSICS LETTERS 88, 083508 (2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top