跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.219) 您好!臺灣時間:2025/12/01 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲緯
研究生(外文):Che-Wei Lin
論文名稱:電磁場對SLN、R-SLN和人腦微血管內皮細胞的電泳遷移率與柔軟參數的效應
論文名稱(外文):Effect of Electromagnetic Field on the Electrophoretic Mobility and the Electrophoretic Softness of SLN, R-SLN, and Human Brain Microvascular Endothelial Cells
指導教授:郭勇志郭勇志引用關係
指導教授(外文):Yung-Chih Kuo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:92
中文關鍵詞:固體脂質奈米粒子電泳遷移率界達電位柔軟參數人腦微血管內皮細胞
外文關鍵詞:solid lipid nanoparticlehuman brain microvascular endothelial cellselectrophoretic mobilitysoftness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以界達電位粒徑分析儀(zetasizer 3000)與高效毛細管電泳儀(high-performance capillary electrophoresis, HPCE)探討以可可脂(cocoa butter, CB)和棕櫚脂(tripalmitin)為脂質相的固體脂質奈米粒子(solid lipid nanoparticle, SLN)、以L-arginine對SLN表面改質形成的R-SLN和人腦微血管內皮細胞(human brain microvascular endothelial cells, HBMECs)在電磁場照射下的電泳遷移率與柔軟參數變化,利用TEM與FE-SEM觀察粒子外觀並以小角度X光散射儀(SAXS)得知SLN表面聚電解質層厚度,進一步結合柔軟粒子電泳理論計算SLN、R-SLN和HBMECs的固定電荷密度(fixed charge density)與柔軟參數(softness)。經由電子顯微鏡下觀察到SLN與R-SLN的型態為圓滑球型而且粒子大小均一,SLN脂質相中可可脂含量增加,造成SLN粒徑變大、電泳遷移率絕對值增加與柔軟參數下降。R-SLN表面上越多Arg造成電泳遷移率絕對值下降、增加聚電解質層厚度、柔軟參數增加與提高被HBMECs攝入的能力。電磁場效應造成SLN、R-SLN和HBMECs的電泳遷移率絕對值下降與柔軟參數上升。
The study aims to the electrophoretic mobility and the softness of solid lipid nanoparticles (SLN) composed of cocoa butter and tripalmitin as lipid phase, L-arginine loaded SLN (R-SLN), and human brain microvascular endothelial cells (HBMECs) were investigated under the influences of electromagnetic field with various power. The size of SLN and R-SLN were measured by zetasizer and confirmed by the images of FE-SEM and TEM. The softness, fixed charge density, and Donnan potential were estimated from the electrophoretic mobility of capillary electrophoresis and the thickness of polyelectrolyte layer of small angle X-ray scattering (SAXS) with the soft particle electrokinetic theory. The results revealed that, the size and the electrophoretic mobility of SLN increased with an increase in the content of CB, but the softness of SLN decreased. The electrophoretic mobility of R-SLN reduced with an increase in L-arginine adsorbed onto SLN surface, but the softness of R-SLN raised. For EMF effects, the electrophoretic mobility of SLN, R-SLN, and HBMECs decreased, but the softness increased.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
符號說明 VIII
第一章 緒論 1
1.1 細胞、膠體電動力學分析 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 電動力學 3
2.1.1 電雙層與界達電位 3
2.1.2 毛細管電泳發展與原理 4
2.1.3 毛細管電泳應用於膠體分析 5
2.1.4 毛細管電泳應用於細胞分析 6
2.1.5 電泳遷移率計算 8
2.1.6 固定電荷密度與Donnan電位計算 8
2.1.7 柔軟粒子理論分析 9
2.2 固體脂質奈米粒子(Solid lipid nanoparticle, SLN) 11
2.3 精胺酸 14
2.4 電磁場於膠體溶液與生物醫學的應用 15
第三章實驗材料、儀器及步驟 19
3.1 實驗材料 19
3.1.1 SLN製備材料 19
3.1.2粒徑、zeta potential與電泳遷移率測定 20
3.1.3 TEM樣品處理材料 20
3.1.4人腦微血管內皮細胞培養與冷凍保存 21
3.1.5免疫螢光法 23
3.1.6其他實驗器具和耗材 23
3.2 實驗儀器 25
3.3 實驗步驟 29
3.3.1 SLN製備 29
3.3.2 Tris緩衝液製備 30
3.3.3粒子密度與表面覆輔v計算 30
3.3.4 R-SLN的製備 31
3.3.5 SLN和R-SLN的粒徑、界達電位 32
3.3.6 SLN和R-SLN電泳遷移率的測定 33
3.3.7穿透式電子顯微鏡 (Transmission electron microscope, TEM) 33
3.3.8場發射型掃描式電子顯微鏡 (Field emission scanning electron
microscopes, FE-SEM) 34
3.3.9小角度X-Ray繞射儀 (Small Angle X-Ray Scattering, SAXS) 34
3.3.10鼠尾膠原蛋白溶液的製備與舖盤 35
3.3.11細胞培養基配製 35
3.3.12人腦微血管內皮細胞培養 36
3.3.13 HBMECs於電磁場下攝入R-SLN,測定界達電位、電泳遷移率 37
3.3.14螢光分析HBMECs攝入SLN、R-SLN 37
第四章 結果與討論 39
4.1改變脂質相中可可脂比例對SLN的影響 39
4.2 改變L-arginine覆輔v對R-SLN的影響 41
4.3 電磁場對SLN、R-SLN的影響 43
4.4 電磁場對人腦微血管內皮細胞與SLN、R-SLN共培養時的影響 44
第五章 結論與建議 47
5.1 結論 47
5.2 建議 48
參考文獻 49
附錄A:柔軟粒子電泳理論的參數 78
附錄B:精胺酸對UV吸收度的檢量線 79
附錄C:SLN成份的結構式 80
附錄D:精胺酸於不同pH值溶液中結構式的改變 82
1.Tagliaro, F., Manetto, G., Crivellente, F., and Smith, F. P., “A brief introduction to capillary electrophoresis”, Forensic Sci. Int., 92, 75-88, 1998.

2.Shaw, D. J., Introduction to colloid and surface chemistry, Oxford, Boston, 1992.

3.S. F. Y. Li., Capillary electrophoresis principles, practice and applications, ELSEVIER, Amsterdam, 1-4, 1994.

4.Kuo, Y. C., and Lin, T. W., “Electrophoretic mobility, zeta Potential, and fixed charge density of bovine knee chondrocytes, methyl methacrylate-sulfopropyl methacrylate, polybutylcyanoacrylate, and solid lipid nanoparticles”, J. Phys. Chem. B, 110, 2202-2208, 2006.

5.Makino, K., Yamamoto, S., Fujimoto, K., Kawaguchi, H., and Ohshima, H., “Surface structure of latex particles covered with temperature -sensitive hydrogel layers”, J. Colloid Interface Sci., 166, 251-258, 1994.

6.Makino, K., and Ohshima, H., “Changes in charge density and softness of a poly(-lactide) microcapsule surface in the hydrolytic degradation process”, Colloid Surf. B-Biointerfaces, 6, 373-378, 1996.

7.陳怡君,“pH值對人類腦微血管內皮細胞和SLN的界達電位、電泳遷移率與離子凝聚之效應”,碩士論文,國立中正大學,台灣,2006。

8.Makino, K., Yamamoto, N., Higuchi, K., Harada, N., Ohshima, H., and Terada, H., “Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres”, Colloid Surf. B-Biointerfaces, 27, 33-39, 2003.
9.Ho, C. C., Kondo, T., Muramatsu, N., and Ohshima, H., “Surface structure of natural rubber latex particles from electrophoretic mobility data”, J. Colloid Interface Sci., 178, 442-445, 1996.

10.Hayashi, H., Tsuneda, S., Hirata, A., and Sasaki, H., “Soft particle analysis of bacterial cells and its interpretation of cell adhesion behaviors in terms of DLVO theory”, Colloid Surf. B-Biointerfaces, 22, 149-157, 2001.

11.Tsuneda, S., Aikawa, H., Hayashi, H., and Hirata, A., “Significance of cell electrokinetic properties determined by soft-particle analysis in bacterial adhesion onto a solid surface”, J. Colloid Interface Sci., 279, 410-417, 2004.

12.Glynn, J. R., Jr., Belongia, B. M., Arnold, R. G., Ogden, K. L., and Baygents, J. C., “Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest”, Appl. Environ. Microbiol., 64, 2572-2577, 1998.

13.Sonohara, R., Muramatsu, N., Ohshima, H., and Kondo, T., “Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements”, Biophys. Chem., 55, 273-277, 1995.

14.Tiyu, G., Jun, F., and Yunxiang, C., “Progress in Electrochemistry of Living Cells”,化學進展, 3, 1998.

15.Ahimou, F., Paquot, M., Jacques, P., Thonart, P., and Rouxhet, P. G., “Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis”, J. Microbiol. Methods, 45, 119-126, 2001.

16.Heiger, D. N., High performance capillary electrophoresis-An Introduction, Hewlett-Packard Co, USA, 1993.

17.Hill, R. J., Saville, D. A., and Russel, W. B., “Electrophoresis of spherical polymer-coated colloidal particles”, J. Colloid Interface Sci., 258, 56-74, 2003.

18.Hsu, J. P., and Kuo, Y. C., “Net penetration charges of an ion-penetrable membrane in a general electrolyte solution”, J. Colloid Interface Sci., 176, 256-263, 1995.

19.Ohshima, H., “Electrophoretic mobility of soft particles”, J. Colloid Interface Sci., 163, 474-483, 1994.

20.Ohshima, H., “Electrophoresis of soft particles: Analytic approximations”, Electrophoresis, 27, 526-533, 2006.

21.Mehnert, W., and Mader, K., “Solid lipid nanoparticles: production, characterization and applications”, Adv. Drug Deliv. Rev., 47, 165-196, 2001.

22.Muller, R. H., Mader, K., and Gohla, S., “Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art”, Eur. J. Pharm. Biopharm., 50, 161-177, 2000.

23.Freitas, C., and Muller, R. H., “Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions”, Int. J. Pharm., 168, 221-229, 1998.

24.Cavalli, R., Caputo, O., Carlotti, M. E., Trotta, M., Scarnecchia, C., and Gasco, M. R., “Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles”, Int. J. Pharm., 148, 47-54, 1997.

25.Fundaro, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G. P., and Gasco, M. R., “Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats”, Pharmacol. Res., 42, 337-343, 2000.

26.Heurtault, B., Saulnier, P., Pech, B., Proust, J.-E., and Benoit, J.-P., “Physico-chemical stability of colloidal lipid particles”, Biomaterials, 24, 4283-4300, 2003.

27.Freitas, C., and Muller, R. H., “Correlation between long-term stability of solid lipid nanoparticles (SLNTM) and crystallinity of the lipid phase”, Eur. J. Pharm. Biopharm., 47, 125-132, 1999.

28.Fillery-Travis, A. J., Foster, L. H., and Robins, M. M., “Stability of emulsions stabilised by two physiological surfactants: L-?phosphatidylcholine and sodium taurocholate”, Biophys. Chem., 54, 253-260, 1995.

29.Tabatt, K., Sameti, M., Olbrich, C., Muller, R. H., and Lehr, C.-M., “Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer”, Eur. J. Pharm. Biopharm., 57, 155-162, 2004.

30.Rudolph, C., Schillinger, U., Ortiz, A., Tabatt, K., Plank, C., Mller, R. H., and Rosenecker, J., “Application of novel solid lipid nanoparticle (SLN) - gene vector formulations based on a dimeric HIV-1 TAT-peptide in Vitro and in Vivo”, Pharmacol. Res, 21, 1662-1669, 2004.

31.Lasic, D. D., and Templeton, N. S., “Liposomes in gene therapy”, Adv. Drug Deliv. Rev., 20, 221-266, 1996.

32.Muller, R. H., Radtke, M., and Wissing, S. A., “Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations”, Adv. Drug Deliv. Rev, 54, S131-S155, 2002.

33.Liedtke, S., Wissing, S., Muller, R. H., and Mader, K., “Influence of high pressure homogenisation equipment on nanodispersions characteristics”, Int. J. Pharm., 196, 183-185, 2002.

34.Gasco, M. R., “Solid lipid nanospheres from warm micro-emulsions”, Pharm. Tech. Europe, 9, 52-58, 1997.

35.Cavalli, R., Marengo, E., Rodrigueez, L., and Gasco, M. R., “Effects of some experimental factors on the production process of solid lipid nanoparticles”, Eur. J. Pharm. Biopharm., 43, 110-115, 1996.

36.Hossain, M. M., Suzuki, T., and Kato, T., “Effect of an amino acid on the surface phase behavior of n-hexadecyl phosphate in Gibbs adsorption layers”, Colloid Surf. A-Physicochem. Eng. Asp., 284-285, 119-124, 2006.

37.Alderton, W. K., Cooper, C. E., and Knowles, R. G., “Nitric oxide synthases: structure, function and inhibition”, Biochem. J., 357, 593-615, 2001.

38.Hossain, M. M., Iimura, K.-i., and Kato, T, “Interactions of l-arginine with Langmuir monolayers of di-n-dodecyl hydrogen phosphate at the air-water interface”, J. Colloid Interface Sci., 304, 200-207, 2006.

39.Onda, M., Yoshihara, K., Koyano, H., Ariga, K., and Kunitake, T., “Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces”, J. Am. Chem. Soc., 118, 8524-8530, 1996.

40.Barreira, S. V. P., and Silva, F., “Surface modification chemistry based on the electrostatic adsorption of poly-L-arginine onto alkanethiol modified gold surfaces”, Langmuir, 19, 10324-10331, 2003.

41.Choi, J. S., Nam, K., Park, J.-y., Kim, J.-B., Lee, J.-K., and Park, J.-s., “Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine”, J. Control. Release, 99, 445-456, 2004.

42.Tsogas, I., Tsiourvas, D., Paleos, C. M., Giatrellis, S., and Nounesis, G., “Interaction of l-arginine with dihexadecylphosphate unilamellar liposomes: the effect of the lipid phase organization”, Chem. Phys. Lipids, 134, 59-68, 2005.
43.Tsogas, I., Tsiourvas, D., Nounesis, G., and Paleos, C. M., “Interaction of poly-L-arginine with dihexadecyl phosphate / phosphatidylcholine liposomes”, Langmuir, 21, 5997-6001, 2005.

44.Johnson, C., and Guy, A., “Nonionizing electromagnetic wave effects in biological materials and system”, Proc. IEEE, 60, 692-718, 1972.

45.Higashitani, K., Iseri, H., Okuhara, K., Kage, A., and Hatade, S., “Magnetic effects on zeta potential and diffusivity of nonmagnetic colloidal particles”, J. Colloid Interface Sci., 172, 383-388, 1995.

46.Oshitani, J., Yamada, D., Miyahara, M., and Higashitani, K., “Magnetic effect on ion-exchange kinetics”, J. Colloid Interface Sci., 210, 1-7, 1999.

47.Tombacz, E., Ma, C., Busch, K. W., and Busch, M. A., “Effect of a weak magnetic field on hematite sol in stationary and flowing systems”, Colloid Polym. Sci., 269, 278-289, 1991.

48.Foster, K. R., “Electromagnetic field effects and mechanisms”, IEEE Eng. Med. Biol. Mag., 15, 50-56, 1996.

49.Lin, J. C., Yuan, P. M. K., and Jung, D. T., “Enhancement of anticancer drug delivery to the brain by microwave induced hyperthermia”, J. Electroanal. Chem., 47, 259-264, 1998.

50.Eibert, T. F., Alaydrus, M., Wilczewski, F., and Hansen, V. W. “Electromagnetic and thermal analysis for lipid bilayer membranes exposed to RF fields”, IEEE Trans. Biomed. Eng., 46, 1013-1020, 1999.

51.Tattersall, J. E. H., Scott, I. R., Wood, S. J., Nettell, J. J., Bevir, M. K., Wang, Z., Somasiri, N. P., and Chen, X., “Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices”, Brain Res., 904, 43-53, 2001.

52.Miglietta, A., Cavalli, R., Bocca, C., Gabriel, L., and Rosa Gasco, M., “Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel”, Int. J. Pharm., 210, 61-67, 2000.
53.Aquilano, D., Cavalli, R., and Gasco, M. R., “Solid lipospheres obtained from hot microemulsions in the presence of different concentrations of cosurfactant: the crystallization of stearic acid polymorphs”, Thermochimi. Acta, 230, 29-37, 1993.

54.Boltri, L., Canal, T., and Esposito, P., “Relevant factors affecting the formation and growth of lipid nanospheres suspensions”, Eur. J. Pharm. Biopharm., 41,70-75, 1995.

55.Higashitani, K., and Oshitani, J., “Magnetic Effects on Thickness of Adsorbed Layer in Aqueous Solutions Evaluated Directly by Atomic Force Microscope”, J. Colloid Interface Sci., 204, 363-368, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊