跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃群哲
研究生(外文):Chun-Che Huang
論文名稱:養液氮、磷與鉀濃度及氮型態對洋桔梗穴盤苗生長及後續開花表現之影響
論文名稱(外文):Effects of Nitrogen, Phosphorus, Potassium Concentration, and Nitrogen Form on Growth of Plug Seedling and Subsequent Flowering Performance in Eustoma
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:鍾仁賜郭華仁黃光亮
口試委員(外文):Ren-Shih ChungHua-Jen KuoKuang-Liang Huang
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:288
中文關鍵詞:全株淨光合作用葉綠素螢光根活性植體分析養液
外文關鍵詞:whole plant net photosynthesischlorophyll fluorescenceroot activityplant tissue analysisnutrient solution
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
洋桔梗[Eustoma grandiflorum (Raf.) Shinn.]為臺灣重要的外銷切花,栽培面積和產量逐年增加,對種苗需求大增,然而目前尚未建立洋桔梗穴盤育苗期間之養分管理標準。本研究於夏季及冬季在25/20℃下探討苗期養液氮濃度、氮型態、磷濃度及鉀濃度對洋桔梗‘克萊利粉’、‘凜白’及‘禮儀彩藍’穴盤苗生長及移植後開花表現之影響。
洋桔梗3品種播種後於25/20℃栽培至子葉完全展開時,每週施用含4-24 (夏季)或4-36 (冬季) mM 氮(N)之強生氏養液1次。小苗自子葉完全展開至第1、2及3對葉展開所需時間以施用16-20 mM N者較少,再提高至24-36 mM者不能再加速生長,施用4-12 mM N者小苗生長緩慢。施用4-8 mM N者全株淨光合作用速率顯著較低,隨養液N濃度提高至20-24 mM而逐漸增加,再提高至28-36 mM不再增加全株淨光合作用速率。隨養液N濃度自4提高至16-20 mM,葉片Fv/Fm值自0.67-0.76增加至0.80-0.82,再提高至24-36 mM處理者Fv/Fm維持在0.80-0.82。葉面積、全株、地上部及地下部乾重隨養液N濃度自4提高至20-24 mM而增加,再提高至28-36 mM不再顯著增加。養液N濃度提高植體N濃度亦提高。養液N濃度自4提高至12 mM使植體磷(P)、鉀(K)、鈣(Ca)、鎂(Mg)濃度隨之下降。以4-8 mM N處理者定植後莖伸長速率較慢,且較晚開花;苗期以20-28 mM N處理者可較早開花與採收。
自子葉完全展開開始施用含20 mM N、銨硝比(NH4+:NO3-)為0:100、25:75、50:50、75:25及100:0之強生氏養液。隨養液NH4+比例提高,介質淋洗液EC值提高,而pH值則下降。隨養液NH4+比例自0%提高至75%-100%,全株淨光合作用速率、根活性、葉面積、全株、地上部及地下部乾重亦提高。苗期之銨態氮比例至少要大於50%,才會使移植後植株較早抽莖與株高較高。
自子葉完全展開開始每週施用1次含0-2.5 (夏季)或0-2.0 (冬季) mM磷(P)之強生氏養液。養液P濃度自0提高至1.0 mM使全株淨光合作用速率增加,但再提高至2.0 mM則光合作用速率會下降。以0 mM P處理者葉片Fv/Fm值最低,其他濃度處理間無顯著差異。根活性亦以2 mM P處理者最低。總葉片數、葉面積和總乾重隨養液P濃度自0提高至0.5-1.0 mM而提高,再提高至2.0-2.5 mM會下降或無顯著增加。植體P濃度隨養液P濃度增加而增加,而植體N、K、Ca、Mg濃度則隨養液P濃度自0提高至0.125-0.25 mM略微增加。苗期施0-0.25 mM P者,移植後會較晚開花,且有部分植株苗期以0 mM P處理者於夏季移植後簇生化,而苗期以0.5-2.5 mM P處理者對移植後開花表現無顯著差異。
自子葉完全展開開始每週施用1次含0-10 mM 鉀(K)之強生氏養液,對植株的全株淨光合作用速率與Fv/Fm值皆無顯著影響。隨養液K濃度提高植體K濃度亦提高。夏季試驗中,隨苗期K濃度由0 mM增至4 mM,‘克萊利粉’葉面積與乾重隨之增加,再提高至10 mM K則不再增加生長,而苗期K濃度對‘凜白’和‘禮儀彩藍’的生長並無顯著影響;冬季試驗中,‘克萊利粉’與‘禮儀彩藍’葉面積與乾重以0-4 mM K處理者較高,隨養液K濃度由6提高至10 mM而減少,養液K濃度對‘凜白’的生長無顯著影響。而苗期K濃度對移植後的開花表現影響並不顯著。
綜合以上試驗結果,參試3品種洋桔梗穴盤苗,自子葉展開至第3對葉展開期間,建議每週施1次含24-28 mM N,且NH4-N的比例應大於50%,及0.5-1.0 mM P和4-6 mM K之強生氏養液。


Lisianthus [Eustoma grandiflorum (Raf.) Shinn.] is an important cut flower for export trade in Taiwan. Market demand has been increasing with increasing planting area and production. However, nutrition management during plug production for Eustoma has not been well established. This study aimed to determine the effects of nitrogen (N), phosphorus (P), and potassium (K) concentration, and nitrogen form of nutrient solution during plug production on seedling growth at 25/20oC and subsequent plant growth and flowering performance of Eustoma ‘Claris Pink’, ‘Rin’, and ‘Ceremony Blue Flash’ grown in summer and winter.
Johnson’s solution containing 4-24 and 4-36 mM N were weekly applied from cotyledon fully expanded to the third leaf pair stage during summer and winter, respectively. Seedlings fertilized with 16-20 mM N took shorter time from treatment to the first, second, and third leaf pairs expanded. Seedlings received 24-36 mM N did not exhibit faster growth, while those fertilized with 4-12 mM N grow slower. Whole plant net photosynthesis rate (Pn), increased with increasing N concentretion from 4 to 20-24 mM, and further increased N at 28-36 mM did not increase Pn. Seedlings fertilized with 4-8 mM N had significant lower Pn. Leaf Fv/Fm value increased from 0.67-0.76 to 0.80-0.82 when N concentration increased from 4 to 16-20 mM. Leaf area, whole plant, shoot, and root dry weight increased with increasing N concentration from 4 to 20-24 mM. Tissue N concentration increased with increasing solution N concentration. Tissue P, K, calcium (Ca), and magnesium (Mg) concentration decreased with increasing solution N concentration from 4 to 12 mM, but tissue P, K, Ca, and Mg did not decrease with higher solution N concentration (16-36 mM). After transplanting, plnats took longer time to bolt and flower when seedlings received 4-8 mM N, as compared with other treatments. Time to flowering and harvest was earlier when seedlings fertilized with 20-28 mM N.
Seedlings were fertilized weekly with Johnson’s solution containing 20 mM N in 0:100, 25:75, 50:50, 75:25, and 100:0 of NH4+ to NO3- ratio. Medium EC increased and pH decreased with increasing NH4+ ratio. Pn, root activity, leaf area, and whole plant, shoot, and root dw increased with increasing NH4+ ratio. After transplanting, plants bolted earlier and had longer stem when seedlings fertilized with 50% or higher NH4+ as N source.
Seedlings were fertilized weekly with Johnson’s solution containing 0-2.5 and 0-2.0 mM P during summer and winter, respectively. Pn increased when P concentration increased from 0 to 1.0 mM, but decreased when P concentration increased to 2 mM. Leaf Fv/Fm value (0.8) did not differ between treatments, while those fertilized with 0 mM P, had the lowest Fv/Fm value. Seedlings fertilized with 2 mM P had the lowest root activity. Total leaf number, leaf area, and dry weight increased when P concentration increased from 0 to 1.0 mM, but decreased when P concentration increased to 2.0-2.5 mM. Tissue P concentration increased with increasing solution P concentration. Tissue N, K, Ca, and Mg concentration slightly increased when solution P concentration increased from 0 to 0.125-0.25 mM, but did not change significantly with further increases in P concentration. Plants took longer to flower when seedlings were fertilized with 0-0.25 mM P and some plants rosetted in summer when plug seedlings were fertilized without P. Flowering performance was not affected in plants when fertilized with 0.5-2.5 mM P during plug stage.
Seedlings were fertilized weekly with Johnson’s solution containing 0-10 mM K during summer and winter, respectively. Solution K concentration did not affect Pn and leaf Fv/Fm value. Tissue K concentration increased with increasing solution K concentration. Plants leaf area and total dry weight in ‘Claris Pink’ increased with increasing K concentretion from 0 to 4 mM, and further increased K to 10 mM did not increase growth in summer. Solution K concentration did not affect growth of ‘Rin’ and ‘Ceremony Blue Flash’ grown in summer. ‘Claris Pink’ and ‘Ceremony Blue Flash’ had higher leaf area and total dry weight when received 0-4 mM K during plug stage in winter High K (8-10 mM) treatments during plug stage reduced leaf area and total dry weight in plants grown in winter. Solution K concentration during plug stage did not affect growth of ‘Rin’ in winter. Flowering performance was not affected in plants when fertilized with 0-10 mM K during plug stage.
From the results as shown above, Eustoma seedlings of tested cultivars should be fertilized with Johnson’s solution containing 24-28 mM N with more than 50% NH4-N, 0.5-1.0 mM P, and 4-6 mM K weekly from cotyledon fully expanded to the third leaf pair expanded.


致謝.................................................... I
目錄.................................................... II
表目錄................................................... V
圖目錄................................................... IX
中文摘要................................................ XVII
英文摘要................................................. XIX
前言.................................................... 1
前人研究................................................. 3
一、 洋桔梗之形態與生長習性................................. 3
二、 洋桔梗穴盤育苗之研究................................... 3
(一) 種子發芽條件......................................... 3
(二) 溫度................................................ 4
(三) 養分................................................ 4
三、 氮對植物生理及生長的影響................................ 5
(一) 吸收、運移與同化......................................5
(二) 光合作用之氣體交換與葉綠素螢光參數....................... 6
(三) 生長與產量........................................... 6
四、 磷對植物生理及生長的影響................................ 8
(一) 吸收、運移與同化...................................... 8
(二) 光合作用之氣體交換與葉綠素螢光參數....................... 9
(三) 生長與產量...................................................... 10
五、 鉀對植物生理及生長的影響................................ 12
(一) 吸收、運移與同化...................................... 12
(二) 光合作用之氣體交換與葉綠素螢光參數....................... 12
(三) 生長與產量........................................... 13
六、 穴盤苗之氮、磷及鉀管理................................. 14
(一) 移植前的施肥......................................... 15
(二) 移植前植物營養狀態對移植後生長的影響..................... 16
材料與方法............................................... 18
結果.................................................... 34
討論................................................... 244
綜合討論與結論............................................ 272
參考文獻................................................. 277
附錄.................................................... 287


王裕權、張元聰、陳燿煌、王仕賢、吳慶杉. 2006. 洋桔梗育苗技術之研究. 台南區農業改良場研究彙報 48: 47-59.
王裕權、張元聰、陳燿煌、林棟樑. 2008. 洋桔梗育苗二三事. 台灣花卉園藝 250: 38-43。
行政院農委會. 農委會100年年報. 25 Jun. 2013. <http://www.coa.gov.tw>
林士詠. 2010. 洋桔梗根系生長對植株抽莖之影響. 國立中興大學園藝學系碩士論文. 臺中.
林昭儀. 2006. 遮光、溫度與無機養分對擎天鳳梨‘Cherry’生長之影響. 國立臺灣大學園藝學系碩士論文. 臺北.
許鈺佩. 2004. 洋桔梗種子發芽特性之研究. 國立臺灣大學農藝系碩士論文. 臺北.
黃欣釧. 2010. 潮汐灌溉下之營養液、介質與遮光對火鶴花‘粉冠軍’生長及開花之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
蔡鴻毅. 2010. 育苗期肥培管理、苗齡及定植時期對洋桔梗生育之影響. 國立嘉義大學園藝學系碩士論文. 嘉義.
八代嘉昭. 1994. トルコギキョウをつくりこなす. 農文協. 東京.
大川清. 1993. 花專科* 育種と栽培. トルコギキヨウ. 誠文堂新光社. 東京.
竹崎あかね、吉田裕一、桝田正治. 2004. トルコギキョウのロゼット株と抽だい株における葉の形態と光合成特性. 園芸学会雑誌 73:287-292.
野添博昭、内園正昭. 1995. 育苗用土中の窒素成分がトルコギキョウの切り花品質に及ぼす影響. 九州農業研究. 57: 205-205.
福田直子. 2012. トルコギキョウの低コスト冬季計画生産の考え方と基本マニュアル. 農研機構 花き研究所.
Abadia, J., I. Madhusudana Rao, and N. Terry. 1987. Changes in leaf phosphate status have only small effects on the photochemical apparatus of sugar beet leaves. Plant Sci. 50:49-55.
Aloni, B., T. Pashkar, L. Karni, and J. Daie. 1991. Nitrogen supply influences carbohydrate partitioning of pepper seedlings and transplant development. J. Amer. Soc. Hort. Sci. 116:995-999.
Araus, J., T. Amaro, J. Voltas, H. Nakkoul, and M. Nachit. 1998. Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res. 55:209-223.
Aslam, M., R.L. Travis, and R.C. Huffaker. 1992. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol. 99:1124-1133.
Balachandran, S. and C.B. Osmond. 1994. Susceptibility of tobacco leaves to photoinhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrition regimes. Plant Physiol. 104:1051-1057.
Bednarz, C., D. Oosterhuis, and R. Evans. 1998. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ. Expt. Bot. 39:131-139.
Bolhar-Nordenkampf, H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3:497-514.
Burnett, S.E., D. Zhang, L.B. Stack, and Z. He. 2008. Effects of phosphorus on morphology and foliar nutrient concentrations of hydroponically grown Scaevola aemula R. Br.‘Whirlwind Blue’. HortScience 43:902-905.
Cakmak, I. and H. Marschner. 1987. Mechanism of phosphorus‐induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiol. Plant. 70:13-20.
Cechin, I. 1998. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes. Photosynthetica 35:233-240.
Ciompi, S., E. Gentili, L. Guidi, and G.F. Soldatini. 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science 118:177-184.
Conover, C.A. and R. Poole. 1986. Nitrogen source effects on growth and tissue content of selected foliage plants. HortScience 21:1008-1009.
Crawford, N.M. and A.D. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395.
DaMatta, F.M., R.A. Loos, E.A. Silva, and M.E. Loureiro. 2002. Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J. Plant Physiol. 159:975-981.
Demmig-Adams, B., W.W. Adams III, K. Winter, A. Meyer, U. Schreiber, J.S. Pereira, A. Kruger, F.C. Czygan, and O.L. Lange. 1989. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177:377-387.
Dole, J.M. and H.F. Wilkins. 1999. Floriculture: Principles and species. 2nd ed. Prentice Hall, Upper Saddle River, U.S.
Drew, M. and L. Saker. 1984. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: Evidence of non-allosteric regulation. Planta 160:500-507.
Du Preez, D. and G. Bate. 1989. A simple method for the quantitative recovery of nitrate‐N during Kjeldahl analysis of dry soil and plant samples. Commun. Soil Sci. Plant Anal. 20:345-357.
Dufault, R.J. and J.R. Schultheis. 1994. Bell pepper seedling growth and yield following pretransplant nutritional conditioning. HortScience 29:999-1001.
Elliott, G.C. and P.V. Nelson. 1983. Relationships among nitrogen accumulation, nitrogen assimilation and plant growth in chrysanthemums. Physiol. Plant. 57:250-259.
Epstein, E. and A. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives Sinauer Sunderland, MA., U.S.
Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19.
Forde, B.G. 2002. The role of long‐distance signalling in plant responses to nitrate and other nutrients. J. Expt. Bot. 53:39-43.
Fredeen, A.L., I.M. Rao, and N. Terry. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89:225-230.
Garton, R.W. and I.E. Widders. 1990. Nitrogen and phosphorus preconditioning of small-plug seedlings influence processing tomato productivity. HortScience 25:655-657.
Greenwood, D.J., J.M. Mckee, D.P. Fuller, I.G. Burns, and B.J. Mulholland. 2007. A novel method of supplying nutrients permits predictable shoot growth and root: shoot ratios of pre-transplant bedding plants. Ann. Bot. 99:171-182.
Haley, T.B. and D.W. Reed. 2004. Optimum potassium concentrations in recirculating subirrigation for selected greenhouse crops. HortScience 39:1441-1444.
Harbaugh, B. and S. Woltz. 1991. Eustoma quality is adversely affected by low pH of root medium. HortScience 26:1279-1280.
Hill-laboratories. 20 Jun. 2013. <http://www.hill-laboratories.com/>
Islam, N., G.G. Patil, and H.R. Gislerod. 2005. Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 103:441-451.
Jacob, J. and D. Lawlor. 1991. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J. Expt. Bot. 42:1003-1011.
Jacob, J. and D.W. Lawlor. 1992. Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1, 5-bisphosphate carboxylase/oxygenase activity, and ribulose-1, 5-bisphosphate pool size. Plant Physiol. 98:801-807.
James, E. and M. van Iersel. 2001. Ebb and flow production of petunias and begonias as affected by fertilizers with different phosphorus content. HortScience 36:282-285.
Jeschke, W.D., E.A. Kirkby, A.D. Peuke, J.S. Pate, and W. Hartung. 1997. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). J. Expt. Bot. 48:75-91.
Jia, Y., X. Yang, E. Islam, and Y. Feng. 2008. Effects of potassium deficiency on chloroplast ultrastructure and chlorophyll fluorescence in inefficient and efficient genotypes of rice. J. Plant Nutr. 31:2105-2118.
Jordan-Meille, L. and S. Pellerin. 2008. Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant Soil 304:157-168.
Kang, J.G. and M.W. van Iersel. 2004. Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens). HortScience 39:49-54.
Kent, M.W. and D.W. Reed. 1996. Nitrogen nutrition of new guinea impatiens ''Barbados'' and Spathiphyllum ''Petite''in a subirrigation system. J. Amer. Soc. Hort. Sci. 121:816-819.
Khamis, S., T. Lamaze, Y. Lemoine, and C. Foyer. 1990. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation relationships between electron transport and carbon assimilation. Plant Physiol. 94:1436-1443.
Kraus, H.T., S.L. Warren, and C.E. Anderson. 2002. Nitrogen form affects growth, mineral nutrient content, and root anatomy of cotoneaster and rudbeckia. HortScience 37:126-129.
Ku, C.S. and D.R. Hershey. 1997. Growth response, nutrient leaching, and mass balance for potted poinsettia. I. Nitrogen. J. Amer. Soc. Hort. Sci. 122:452-458.
Lauer, M.J., D.G. Blevins, and H. Sierzputowska-Gracz. 1989. 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition. Plant Physiol. 89:1331-1336.
Lecompte, F., M. Abro, and P. Nicot. 2010. Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathol. 59:891-899.
Lee, R.B. and R. Ratcliffe. 1993. Subcellular distribution of inorganic phosphate, and levels of nucleoside triphosphate, in mature maize roots at low external phosphate concentrations: measurements with 31P-NMR. J. Expt. Bot. 44:587-598.
Li, X.T., P. Cao, X.G. Wang, M.J. Cao, and H.Q. Yu. 2011. Comparison of gas exchange and chlorophyll fluorescence of low-potassium-tolerant and-sensitive soybean [Glycine max (L.) Merr.] cultivars under low-potassium condition. Photosynthetica 49:633-636.
Lima, J., P. Mosquim, and F. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 37:113-121.
Lin, C.-Y. and D.-M. Yeh. 2008. Potassium nutrition affects leaf growth, anatomy, and macroelements of Guzmania. HortScience 43:146-148.
Lopez-Bucio, J., E. Hernandez-Abreu, L. Sanchez-Calderon, M.a.F. Nieto-Jacobo, J. Simpson, and L. Herrera-Estrella. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244-256.
Marchese, J., I. Katz, A. Sousa, and J. Rodrigues. 2005. Gas exchange in lisianthus plants (Eustoma grandiflorum) submitted to different doses of nitrogen. Photosynthetica 43:303-305.
Maathuis, F., A.M. Ichida, D. Sanders, and J.I. Schroeder. 1997. Roles of higher plant K+ channels. Plant Physiol. 114:1141-1149.
Maathuis, F.J. and D. Sanders. 1996. Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 96:158-168.
Mak, A.T. and D.M. Yeh. 2001. Nitrogen nutrition of Spathiphyllum ‘Sensation’ grown in sphagnum peat- and coir-based media with two irrigation methods. HortScience 36:645-649.
Masson, J., N. Tremblay, and A. Gosselin. 1991. Nitrogen fertilization and HPS supplementary lighting influence vegetable transplant production. I. Transplant growth. J. Amer. Soc. Hort. Sci. 116:594-598.
McGrady, J. 1997. Transplant nutrient conditioning improves cauliflower early growth. J. Veg. Crop Prod. 2:39-49.
Melton, R.R. and R.J. Dufault. 1991a. Nitrogen, phosphorus, and potassium fertility regimes affect tomato transplant growth. HortScience 26:141-142.
Melton, R.R. and R.J. Dufault. 1991b. Tomato seedling growth, earliness, yield, and quality following pretransplant nutritional conditioning and low temperatures. J. Amer. Soc. Hort. Sci. 116:421-425.
Mengel, K. and W.W. Arneke. 1982. Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol. Plant. 54:402-408.
Mengel, K. and H. E. Haeder. 1977. Effect of potassium supply on the rate of phloem sap exudation and the composition of phloem sap of Ricinus communis. Plant Physiol. 59:282-284.
Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Pubblishers, MA., U.S.
Netto, A.T., E. Campostrini, J.G.d. Oliveira, and R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Hort. 104:199-209.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. 1991. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 48:171-176.
Ohkawa, K., M. Korenaga, and T. Yoshizumi. 1993. Influence of temperature prior to seed ripening and at germination on rosette formation and bolting of Eustoma grandiflorum . Scientia Hort. 53:225-230.
Peoples, T.R. and D.W. Koch. 1979. Role of potassium in carbon dioxide assimilation in Medicago sativa L. Plant Physiol. 63:878-881.
Peterson, A.G., J.T. Ball, Y. Luo, C.B. Field, P.B. Reich, P.S. Curtis, K.L. Griffin, C.A. Gunderson, R.J. Norby, and D.T. Tissue. 1999. The photosynthesis–leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta‐analysis. Global Change Biol. 5:331-346.
Pitchay, D.S., J.M. Frantz, J.C. Locke, C.R. Krause, and G.C. Fernandez. 2007. Impact of applied nitrogen concentration on growth of elatior begonia and New Guinea impatiens and susceptibility of begonia to Botrytis cinerea. J. Amer. Soc. Hort. Sci. 132:193-201.
Plesničar, M., R. Kastori, N. Petrović, and D. Panković. 1994. Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. J. Expt. Bot. 45:919-924.
Radin, J.W. and M.P. Eidenbock. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol. 75:372-377.
Raghothama, K. 1999. Phosphate acquisition. Annu. Rev. Plant Biol. 50:665-693.
Raghothama, K. 2000. Phosphate transport and signaling. Curr. Opin. Plant Biol. 3:182-187.
Reed, D.W. 1996. A grower’s guide to water, media, and nutrition for greenhouse crops.1st ed. Ball Publishing, North Carolina, U.S.
Rideout, J.W. 2004. Field growth and yield of tomato transplants grown in the float system using low phosphorus fertilizer and height restricting cultural practices. HortScience 39:23-27.
Romero, F.R., H.G. Taber, and R.J. Gladon. 2006. Nitrogen source and concentration affect growth and performance of bedding-plant impatiens. J. Plant Nutr. 29:1315-1326.
Sakata Seeds. 2012. < http://www.sakataornamentals.com/>
Sattelmacher, B., F. Klotz, and H. Marschner. 1990. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 123:131-137.
Sawada, S., H. Usuda, and T. Tsukui. 1992. Participation of inorganic orthophosphate in regulation of the ribulose-1, 5-bisphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance. Plant Cell Physiol. 33:943-949.
Schachtman, D.P., R.J. Reid, and S. Ayling. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 116:447-453.
Scherer, H.W., C.T. Mackown, and J.E. Leggett. 1984. Potassium-ammonium uptake interactions in tobacco seedlings. J. Expt. Bot. 35:1060-1070.
Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+-ATPase. Zeitschrift fur Pflanzenernahrung und Bodenkunde 160:275-281.
Scoggins, H.L., D.A. Bailey, and P.V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. HortScience 37:108-112.
Scoggins, H.L. and H.A. Mills. 1998. Poinsettia growth, tissue nutrient concentration, and nutrient uptake as influenced by nitrogen form and stage of growth. J. Plant Nutr. 21:191-198.
Shane, M.W., M.E. McCully, and H. Lambers. 2004. Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J. Expt. Bot. 55:1033-1044.
Sinclair, T. and T. Horie. 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science 29:90-98.
Soundy, P., D.J. Cantliffe, G.J. Hochmuth, and P.J. Stoffella. 2001. Nutrient requirements for lettuce transplants using a floatation irrigation system II. Potassium. HortScience 36:1071-1074.
Soundy, P., D.J. Cantliffe, G.J. Hochmuth, and P.J. Stoffella. 2001. Nutrient requirements for lettuce transplants using a floatation irrigation system. I. Phosphorus. HortScience 36:1066-1070.
Soundy, P., D.J. Cantliffe, G.J. Hochmuth, and P.J. Stoffella. 2005. Management of nitrogen and irrigation in lettuce transplant production affects transplant root and shoot development and subsequent crop yields. HortScience 40:607-610.
Steponkus, P.L. and F. Lanphear. 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42:1423-1426.
Styer, R.C. and D.S. Koranski. 1997. Plug & transplant production. A grower''s guide.1st ed. Ball publishing, Oklahoma, U.S.
Takei, K., T. Takahashi, T. Sugiyama, T. Yamaya, and H. Sakakibara. 2002. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J. Expt. Bot. 53:971-977.
Takesaki, A., Y. Yoshida, and M. Masuda. 2004. Leaf structure and photosynthetic properties in rosetting and bolting Eustoma plants. J. Jpn. Soc. Hort. Sci 73:287-292.
Tremblay, N. and M. Senecal. 1988. Nitrogen and potassium in nutrient solution influence seedling growth of four vegetable species. HortScience 23:1018-1020.
van Iersel, M., R. Beverly, P. Thomas, J. Latimer, and H. Mills. 1998a. Fertilizer effects on the growth of impatiens, petunia, salvia, and vinca plug seedlings. HortScience 33:678-682.
van Iersel, M., P. Thomas, R. Beverly, J. Latimer, and H. Mills. 1998b. Nutrition affects pre-and posttransplant growth of impatiens and petunia plugs. HortScience 33:1014-1018.
van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1999. Nitrogen, phosphorus, and potassium effects on pre‐and post‐transplant growth of salvia and vinca seedlings. J. Plant Nutr. 22:1403-1413.
Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423-447.
Wang, Y.T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42:1563-1567.
Weigle, J., H. Taber, and S. Dunston. 1982. Ammonium toxicity of Impatiens platypetala. HortScience 17:199-200.
Weng, X.Y., H.X. XU, and D.A. Jiang. 2005. Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plants. J. Integrative Plant Biol. 47:560-566.
Weston, L. and B. Zandstra. 1986. Effect of root container size and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. 111.
Whitcher, C.L., M.W. Kent, and D.W. Reed. 2005. Phosphorus concentration affects New Guinea impatiens and vinca in recirculating subirrigation. HortScience 40:2047-2051.
Yeh, D.M., L. Lin, and C. Wright. 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Scientia Hort. 86:223-233.
Zaccai, M. and N. Edri. 2002. Floral transition in lisianthus (Eustoma grandiflorum). Scientia Hort. 95:333-340.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊