跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王馨茹
研究生(外文):Hsin Ju Wang
論文名稱:探討A型流感病毒NP蛋白質在宿主蛋白質hnRNP A2/B1調控miRNA生合成裡的機轉
論文名稱(外文):Investigation of the role of NP in hnRNP A2/B1-mediated miRNA biogenesis
指導教授:施信如施信如引用關係林素珍林素珍引用關係
指導教授(外文):S. R. ShihS. J. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:79
中文關鍵詞:A型流行性感冒病毒核蛋白質hnRNP A2/B1miRNA
外文關鍵詞:Influenza A virusnucleproteinhnRNP A2/B1miRNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
A 型流行性感冒病毒感染通常會造成呼吸道疾病。我們發現 NP 是與 hnRNP A2/B1 的 glycine rich domain (GRM) 直接結合,且當病 毒感染 A549 細胞 3 至 6 小時後 NP 與 hnRNP A2/B1 分佈於細胞核內 相同的位置。與 hnRNP A2/B1 序列相似的 hnRNP A1 已被報導參與 pri-miRNA processing,而 hnRNP A2/B1 已知與 miR-7-1 terminal loop 結合。流感病毒感染會造成 miRNA的改變,進而影響病毒的複製, 已有文獻指出 miR-7可藉由抑制免疫基因進而正向調控病毒。基於以 上文獻進一步探討 NP與 hnRNPA2/B1之間的交互作用是否對感染後 的 miRNA 進行調控。本研究發現: (1) hnRNP A2/B1 可正向調控 miR-7-1 的生合成。藉由抑制 hnRNP A2/B1 表現導致 miR-7-1 的表現 量下降,而過度表現 hnRNP A2 時,miR-7-1 的表現量上升。 (2) NP 可能藉由與 hnRNP A2/B1 的結合正向調控 miR-7-1 的生合成。顯示在 過度表現 NP-Flag 的細胞中,pri-miR-7-1 可與較多的 NP 及 hnRNP A2/B1 結合。 (3) 當 A549 細胞被 A/WSN/33 病毒株感染時,hnRNP A2/B1 可正向調控 miR-7-1 生合成去影響病毒的複製。當 A/WSN/33 感染 hnRNP A2/B1 被抑制的細胞時,miR-7-1 的表現量下降。
Influenza A virus infection frequently causes respiratory disease. Our research group observed that NP can interact directly with a glycine- rich motif of heterogeneous nuclear ribonucleoproteins (hnRNP A2/B1). In addition, NP and hnRNP A2/B1 colocalize in the nuclei of virus-infected cells early in the infection process. The RNA recognition motif of hnRNP A2/B1 exhibits greater than 80% similarity with hnRNP A1, which can modulate miRNA biogenesis. A previous study indicated that hnRNP A2/B1 can interact with the terminal loop of miR-7-1. Another research demonstrated that miR-7-1 positively regulate virus replication by targeting immune genes. In view of previous researches, we predicted NP modulated miRNA by interacting with hnRNP A2/B1. Thus, we chose miR-7-1 as our taget based on previous reports. Our research indicated that: (1) hnRNP A2/B1 may positively regulate
miR-7-1 biogenesis. MiR-7-1 will decrease when knockdown hnRNP A2/B1, and miR-7-1 will increase when over express hnRNP A2/B1. (2) NP may positively regulate miR-7-1 through hnRNP A2/B1. A pri-miR-7-1 RNA pull-down assay revealed that NP and hnRNP A2/B1 were enhanced as the NP-Flag plasmid expressed. (3) hnRNP A2/B1 may positively regulate miR-7-1 in A/WSN/33 virus-infected cell. MiR-7-1 decreased when hnRNP A2/B1-inhibited A549 cells were infected with A/WSN/33.
指導教授推薦書
論文口試委員會審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 x
附圖目錄 xii
第一章 前言 1
1.1 A型流感病毒性質簡介 1
1.2 NP簡介 2
1.2.1 NP之RNA結合活性 2
1.2.2 NP在viral ribonucleoprotein中扮演的角色 3
1.2.3 NP與宿主蛋白質的交互作用 3
1.2.4 NP對於病毒複製的重要性 3
1.3 Group A heterogeneous nuclear ribonucleoprotein簡介 4
1.3.1 hnRNP A2/B1簡介 4
1.3.2 hnRNP A2/B1與hnRNP A1的相似性 5
1.3.3 hnRNP A/B family 5
1.3.4 Group A hnRNPs調控某些正股病毒的複製 7
1.4 小分子核醣核酸 (MicroRNA, miRNA) 8
1.5 證實NP與hnRNP A2/B1的交互作用 10
1.5.1 hnRNPA2/B1為NP結合的宿主蛋白質之一 10
1.5.2 NP與hnRNP A2/B1在病毒感染不同時期的細胞內分佈位置 11
第二章 研究目的 13
第三章 材料與方法 16
3.1 A549細胞株的培養 16
3.2 microRNA萃取 16
3.3 轉染作用 18
3.3.1 應用於過量表現hnRNP A2 18
.3.3.2 應用於抑制hnRNPA2/B1表現 18
3.4 蛋白質萃取 19
3.5 蛋白質定量 19
3.6 西方墨點法 19
3.7 microRNA之Reverse transcription PCR 20
3.8 利用real-time PCR監控miRNA precursor之轉染效率 21
3.9 In Vitro Transcripition試管內轉錄 21
3.10 RNA pull down assay 21
第四章 實驗結果 23
4.1 在A549細胞中抑制hnRNP A2/B1觀察miR-7-1、miR-132、miR-146a、miR-187、miR-200c和miR-1275的表現 23
4.2 在A549細胞中過度表現hnRNP A2觀察miR-7-1、miR-132、miR-146a、miR-187、miR-200c和miR-1275的表現 24
4.3 在A549細胞中單獨表現hnRNP A2或NP-Flag及共同表現hnRNP A2和NP對於miR-7-1、miR-132和miR-146a生合成的影響 24
4.4 hnRNP A2/B1與pri-let-7a、pri-miR-7-1、pri-miR-132和pri-miR-146a在Hela細胞及A549細胞中的結合情形 25
4.5 hnRNP A2/B1和NP 與pri-let-7a、pri-miR-7-1、pri-miR-132和pri-miR-146a在過度表現NP-Flag的A549細胞中的結合情形 26
4.6 於A549細胞中過度表現glycine rich domain (GRM) 缺失的HA-hnRNP A2和NP-Flag,比較hnRNP A2和NP與pri-let-7a、pri-miR-7-1和pri-miR-146a的細胞中的結合情形 27
4.7 探討當A/WSN/33感染A549細胞時,hnRNP A2/B1如何調控let-7a、miR-7-1及miR-146a的表現 28
第五章 結果與討論 29
5.1 結論 29
5.2 hnRNP A2/B1正向調控miR-7-1生合成 30
5.3 NP藉由與hnRNP A2/B1結合正向調控miR-7-1生合成 32
5.4 當A型流感病毒感染細胞時,病毒核蛋白質nucleoprotein (NP)能夠藉由與hnRNP A2/B1直接結合正向調控miR-7-1生合成進而抑制先天免疫基因表現以促進病毒複製速率 33
第六章 參考資料 35
第七章 圖 42
第八章 附圖 51

圖目錄
圖 1、利用轉染將hnRNP A2/B1 siRNA送入A549細胞中抑制hnRNP A2/B1表現,miR-7-1、miR-132、miR-146a、miR-187、miR-200c和miR-1275的表現量 42
圖 2、利用轉染將HA-hnRNP A2質體送入A549細胞中過度表現hnRNP A2,miR-7-1、miR-132、miR-146a、miR-187、miR-200c和miR-1275的表現量 43
圖 3、利用轉染將HA-hnRNP A2和NP-Flag質體送入A549細胞中單獨或共同表現hnRNP A2和NP,miR-7-1、miR-132和miR-146a的表現量 44
圖 4、在Hela細胞和A549細胞,pri-let-7a和pri-miR-7-1皆會與hnRNP A2/B1直接或間接結合 45
圖 5、在過度表現NP-Flag的A549細胞中,NP和hnRNP A2/B1皆會與pri-let-7a、pri-miR-7-1和pri-miR-146a結合將A549細胞細胞萃取液與Biotin標定的pri-miRNA於試管中反應後,以Strepavidin沉澱。 46
圖 6、在共同表現缺少glycine rich domain (GRM) 的HA-hnRNP A2和NP-Flag的A549細胞中, NP和hnRNP A2/B1與 pri-let-7a和pri-miR-7-1結合的表現量減少將A549細胞細胞萃取液與Biotin標定的pri-miRNA於試管中反應後,以Strepavidin沉澱。 48
圖 7、當A/WSN/33感染hnRNP A2/B1被抑制的A549細胞時,let-7a、miR-7-1和miR-146a的表現量 50

附圖目錄
附圖 1、流感病毒顆粒卡通示意圖 51
附圖 2、流感病毒複製週期 52
附圖 3、hnRNPs 結構圖 53
附圖 4、hnRNP A2與hnRNP B1來源為同一基因,經替代性剪接而產生的兩種isoforms 54
附圖 5、以Clustal W比對hnRNP A1與hnRNP A2序列 55
附圖 6、利用EMBOSS軟體比對hnRNP A0、hnRNP A1、hnRNP A2、hnRNP B1和hnRNP A3序列 56
附圖 7、調控microRNA processing的蛋白群 57
附圖 8、成熟miRNA的生成過程 58
附圖 9、miRNA影響病毒複製的可能機制 59
附圖 10、hnRNP A2/B1為可與NP結合的宿主蛋白質之一 60
附圖 11、NP與hnRNPA2/B1在病毒感染不同時期的細胞內分佈位置 62
附圖 12、當細胞被A/WSN/33病毒株感染初期,NP可能藉由與hnRNP A2/B1在細胞核內直接結合正調控miR-7-1生合成,且miR-7-1能夠結合先天免疫基因抑制基因表現進而增加病毒的複製的模型圖。 63
附圖 13、在過度表現NP-Flag的293T細胞中做Flag-IP,利用anti-Flag免疫沉澱NP-Flag及其結合的蛋白 64




1. Boivin, S., et al., Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. Journal of Biological Chemistry, 2010. 285(37): p. 28411-28417.
2. Martcheva, M., An evolutionary model of influenza A with drift and shift. Journal of Biological Dynamics, 2012. 6(2): p. 299-332.
3. Wise, H.M., et al., A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of virology, 2009. 83(16): p. 8021-8031.
4. Muramoto, Y., et al., Identification of novel influenza A virus proteins translated from PA mRNA. Journal of virology, 2013. 87(5): p. 2455-2462.
5. Wise, H.M., et al., Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain. PLoS pathogens, 2012. 8(11): p. e1002998.
6. Chen, W., et al., A novel influenza A virus mitochondrial protein that induces cell death. Nature medicine, 2001. 7(12): p. 1306-1312.
7. Medina, R.A. and A. García-Sastre, Influenza A viruses: new research developments. Nature Reviews Microbiology, 2011. 9(8): p. 590-603.
8. Portela, A.n. and P. Digard, The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of general virology, 2002. 83(4): p. 723-734.
9. Wang, P., P. Palese, and R.E. O'Neill, The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. Journal of virology, 1997. 71(3): p. 1850-1856.
10. Elton, D., et al., Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. Journal of virology, 2001. 75(1): p. 408-419.
11. Momose, F., et al., Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. Journal of virology, 2001. 75(4): p. 1899-1908.
12. Naito, T., et al., An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. Proceedings of the National Academy of Sciences, 2007. 104(46): p. 18235-18240.
13. Wang, P., et al., Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein. Journal of virology, 2009. 83(16): p. 7850-7861.
14. Ye, Q., R.M. Krug, and Y.J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature, 2006. 444(7122): p. 1078-1082.
15. Mayeda, A., et al., Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. The EMBO journal, 1994. 13(22): p. 5483.
16. Biamonti, G., et al., Two homologous genes, originated by duplication, encode the human hnRNP proteins A2 and A1. Nucleic acids research, 1994. 22(11): p. 1996-2002.
17. Han, S.P., et al., Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA, 2010. 16(9): p. 1760-1768.
18. Golan-Gerstl, R., et al., Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer research, 2011. 71(13): p. 4464-4472.
19. Clower, C.V., et al., The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proceedings of the National Academy of Sciences, 2010. 107(5): p. 1894-1899.
20. Kashima, T., et al., hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Human molecular genetics, 2007. 16(24): p. 3149-3159.
21. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010. 11(9): p. 597-610.
22. Newman, M.A., J.M. Thomson, and S.M. Hammond, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. Rna, 2008. 14(8): p. 1539-1549.
23. Guil, S. and J.F. Cáceres, The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature structural &; molecular biology, 2007. 14(7): p. 591-596.
24. Michlewski, G., S. Guil, and J.F. Cáceres, Stimulation of pri-miR-18a processing by hnRNP A1, in Regulation of microRNAs. 2010, Springer. p. 28-35.
25. Michlewski, G. and J.F. Cáceres, Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nature structural &; molecular biology, 2010. 17(8): p. 1011-1018.
26. Choudhury, N.R., et al., Tissue-specific control of brain-enriched miR-7 biogenesis. Genes &; development, 2013. 27(1): p. 24-38.
27. Tan, H., et al., MicroRNA-277 modulates the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS genetics, 2012. 8(5): p. e1002681.
28. Katoh, H., et al., Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. Journal of virology, 2011. 85(21): p. 10976-10988.
29. Paranjape, S.M. and E. Harris, Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. Journal of Biological Chemistry, 2007. 282(42): p. 30497-30508.
30. Lin, J.-Y., et al., hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. Journal of virology, 2009. 83(12): p. 6106-6114.
31. Kim, C.S., et al., An RNA-binding protein, hnRNP A1, and a scaffold protein, septin 6, facilitate hepatitis C virus replication. Journal of virology, 2007. 81(8): p. 3852-3865.
32. Wang, Y., J. Zhou, and Y. Du, hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export. Virology, 2014. 449: p. 53-61.
33. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene< i> lin-4 encodes small RNAs with antisense complementarity to< i> lin-14. Cell, 1993. 75(5): p. 843-854.
34. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-355.
35. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-297.
36. Kumarswamy, R. and S. Chandna, Inhibition of microRNA‐14 contributes to actinomycin‐D‐induced apoptosis in the Sf9 insect cell line. Cell biology international, 2010. 34(8): p. 851-857.
37. Vasilatou, D., et al., The role of microRNAs in normal and malignant hematopoiesis. European journal of haematology, 2010. 84(1): p. 1-16.
38. Chekulaeva, M. and W. Filipowicz, Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Current opinion in cell biology, 2009. 21(3): p. 452-460.
39. Ryan, B.M., A.I. Robles, and C.C. Harris, Genetic variation in microRNA networks: the implications for cancer research. Nature Reviews Cancer, 2010. 10(6): p. 389-402.
40. Forte, E., et al., The Epstein-Barr virus (EBV)-induced tumor suppressor microRNA MiR-34a is growth promoting in EBV-infected B cells. Journal of virology, 2012. 86(12): p. 6889-6898.
41. Triboulet, R., et al., Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science Signaling, 2007. 315(5818): p. 1579.
42. Jopling, C.L., et al., Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005. 309(5740): p. 1577-1581.
43. Voinnet, O., Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews Genetics, 2005. 6(3): p. 206-220.
44. Cullen, B.R., Viruses and microRNAs. Nature genetics, 2006. 38: p. S25-S30.
45. Li, Y., et al., Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology, 2011. 421(2): p. 105-113.
46. Ma, Y.J., et al., Cellular microRNA let‐7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. Journal of cellular and molecular medicine, 2012. 16(10): p. 2539-2546.
47. Song, L., et al., Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. Journal of virology, 2010. 84(17): p. 8849-8860.
48. Buggele, W.A., K.E. Johnson, and C.M. Horvath, Influenza A virus infection of human respiratory cells induces primary microRNA expression. Journal of Biological Chemistry, 2012. 287(37): p. 31027-31040.
49. Meliopoulos, V.A., et al., MicroRNA regulation of human protease genes essential for influenza virus replication. PloS one, 2012. 7(5): p. e37169.
50. Tambyah, P.A., et al., microRNAs in circulation are altered in response to influenza A virus infection in humans. PloS one, 2013. 8(10): p. e76811.
51. Song, H., et al., Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC infectious diseases, 2013. 13(1): p. 257.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top