跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林以晨
研究生(外文):Yi-Chen Lin
論文名稱:離子高分子金屬複合材料應用在雙頻性天線與可靠性之研究
論文名稱(外文):Application of Ionic Polymer Metallic Composite for Dual Band Antenna and Reliability
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
口試委員:陳奕君吳肇欣
口試委員(外文):I-Chun ChengChao-Hsin Wu
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:69
中文關鍵詞:雙頻性天線射頻切換開關電流驅動聚合物
外文關鍵詞:Dual-band antennaRF switchelectro-active polymer actuator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在文中我們將會探討離子聚合物金屬複合材料作為射頻切換開關的應用。利用離子聚合物金屬複合材料作為制動器控制一金屬片,連結或斷開天線與一延伸段,進而改變天線的接收頻率,設計成一組雙頻性天線。此複合材料有諸多優點如重量輕、體積小、成本低、驅動電壓低……等,特別是在於驅動電壓只需約3伏特左右,故適合應用在可攜式裝置上。
我們將此雙頻性天線結構設計於手機裝置中,在施加驅動電壓前,制動器平躺並使金屬片貼服兩天線段,工作頻率為1.07GHz;當驅動電壓施加至3伏特,制動器產生形變使金屬片離開兩天線段,工作頻率升至2.14GHz,反射損失皆低於-10dB。為了改善電解與在空氣中的使用時間等問題,我們利用碳酸丙烯酯作為電解液並加入過氯酸鋰取代原先的氫氧化鋰水溶液。結果在操作電壓3.5伏特下,離子聚合物金屬複合材料可在空氣中致動超過三個月且致動位移量並未明顯減弱。因此,離子聚合物金屬複合材料應用在雙頻性天線上是可行的且充滿潛力。


In this research, a new application of electro-active-polymer for RF (radio frequency) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change operating frequency of inverted-F antenna. This switch has attractive advantages, such as light weight, small volume and low cost. Especially, driving voltage of 3 volts and thickness of 200 μm make IPMC be suitable for mobile devices. IPMC acts as a normally-on switch to control the operating frequency of reconfigurable antenna in mobile phones. We experimentally demonstrated that an IPMC switch can shift operating frequency from 1.1 GHz to 2.1 GHz with both return losses less than -10 dB under network analysis. To minimize electrolysis and maximize operation time in air, the propylene carbonate electrolyte with Lithium perchlorate (LiClO4) was applied inside IPMC. The results show that IPMC can be actuated over three months in 3.5 V and tip displacement is decreased less than 10%. Therefore, an IPMC actuator is a promising solution for the reconfigurable antenna application.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Electroactive polymers 1
1.2 Ionic polymer metallic composite 3
1.3 RF switch 9
Chapter 2 Ionic Polymer Metallic Composite Switch 14
2.1 IPMC fabrication 14
2.1.1 Surface treatment 15
2.1.2 First reduction 19
2.1.3 Double reduction 21
2.2 Characteristics 25
2.2.1 Morphology 25
2.2.2 Tip displacement 26
2.3 IPMC switch design 28
Chapter 3 Reconfigurable Inverted-F Antenna 33
3.1 Software 33
3.2 Design process 34
3.3 Microstrip line antenna 35
3.3.1 Characteristics of patch antenna 36
3.3.2 Feeding method 38
3.3.3 Method of analysis 39
3.4 Inverted-F antenna 41
3.4.1 Basic concept of inverted-F antenna 41
3.4.2 Analysis of inverted-F antenna 42
3.5 Antenna Simulation 45
3.5.1 Inverted-F antenna 46
3.5.2 Adding antenna extended path 50
Chapter 4 Fabrication and Measurement 54
4.1 Antenna fabrication in mobile phone 54
4.2 Measurement 56
Chapter 5 Reliability 61
Chapter 6 Conclusion 65
REFERENCE 66



[1] Binayak Bhandari, Gil-Yong Le and Sung-Hoon Ahn, “A Review on IPMC Material as Actuators and Sensors: Fabrications, Characteristics and Applications,” International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 1, pp. 141-163, 2012.
[2] Bar-Cohen Y., “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Poten pptial, and Challenges, 2nd ed.,” SPIE Publications, 2004.
[3] Shahinpoor, Bar-Cohen Y., Xue T., Simpson, J.O and Smith, J., "Ionic Polymer-Metal Composites (IPMC) as Biomimetic Sensors and Actuators", Smart Structures and Materials, pp. 3324-27, 1998.
[4] R. P. Hamlen, C. E. Kent and S. N. Shafer, “Electrolytically Activated Contractile Polymer” Nature, Vol. 206 pp. 1149-1150, 1965.
[5] Oguro, K., Kawami, Y. and Takenaka, H., “Bending of an ion conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. Journal of Micromachine Society, Vol. 5, pp. 27-30, 1992.
[6] Shahinpoor, M., “Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles,” Smart Mater. Struct., Vol. 1, No. 1, pp. 91-94, 1992.
[7] Sadeghipour, K., Salomon, R. and Neogi, S., “Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper,” Smart Mater. Struct., Vol. 1, No. 2, pp. 172-179, 1992.
[8] DuPont fuel cells. [Online]. Available: http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf
[9] Asahi glass. [Online]. Available: http://www.agc.com/english/csr/env/products/11.html
[10] Asahi chemicals. [Online]. Available: http://www.asahi-kasei.co.jp/chemicals/en/products.html#porima
[11] Frequency Bands. [Online]. Available: http://www.antenna-theory.com/basics/freqBands.html
[12] GSM frequency bands. [Online]. Available: https://en.wikipedia.org/wiki/GSM_frequency_bands#cite_note-1
[13] M. Daneshmand and R. R. Mansour, “Multiport MEMS-Based Waveguide and Coaxial Switches, “IEEE Transactionson Microwave Theoryand Techniques, Vol. 53, NO. 11, 2005.
[14] Ching-Liang Dai1, Hsuan-Jung Peng, Mao-Chen Liu, Chyan-Chyi Wuand Lung-Jieh Yang, “Design and Fabrication of RF MEMS Switch by the CMOS Process, “Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 197-202, 2005.
[15]Vaughan, R. G., “Switched parasitic elements for antenna diversity,” IEEE Transactions on Antennas and Propagation, Vol. 47, No.2, pp.399-405, 1999.
[16] S. Zhang, G. H. Huff, J. Feng, and J. T. Bernhard, “A Pattern Reconfigurable Microstrip Parasitic Array, “IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2004.
[17] G.H. Huff, J. Feng, S. Zhang, and J.T. Bernhard, “A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna,” IEEE Microwave and Wireless Components Letters, Vol. 13, Issue 2, pp. 57-59, 2003.
[18] Thermpon Ativanichayaphong, Ying Cai, Jianqun Wang, Mu Chiaoand J.-C. Chiao, “Design Considerations of Reconfigurable Antennas using MEMS Switches, “SPIE 2005 Microelectronics, MEMS, and Nanotechnology Symposium, Microelectronics: Design, Technology, and Packaging Conference, Brisbane, Australia, 2005.
[19] Gabriel M. Rebeiz and Jeremy B. Muldavin, “RF MEMS Switches and Switch Circuits,” IEEE Microwave Magazine, Vol. 2, pp. 59-71, 2001.
[20] HFSS. [Online]. Available: http://en.wikipedia.org/wiki/HFSS
[21] Patch Antenna. [Online]. Available: http://en.wikipedia.org/wiki/Patch_antenna
[22] Microstrip (Patch) Antennas. [Online]. Available: http://www.antenna-theory.com/antennas/patches/antenna.php
[23] Design and fabrication of a small microstrip patch antenna. [Online]. Available: http://projectus.freehost7.com/Microstrip-patch-antenna-design/?design-and-fabrication-of-a-small-microstrip-patch-antenna
[24] Constantine A. Balanis, “Antenna Theory Analysis and Design,” John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
[25] B.T.P.Madhav, J.Chandrasekhar Rao, K.Nalini, N.Durga Indira, “Analysis of Coaxial Feeding and Strip Line Feeding on the Performance of the Square Patch Antenna,” Int. J. Comp. Tech. Appl., Vol. 2 (5), 1352-1356, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top