1.Adalsteinsson, D. and Sethian J.A. (1999). The fast construction of extension velocities in level set methods, Journal of Computational Physics, Vol. 148, pp. 2-22.
2.Ahrens, J.P. (1981). Irregular wave run-up on smooth slopes, CETA No. 81-17, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Ft. Belvoir, VA.
3.Amsden, A.A. and Harlow, F.H. (1970). The SMAC method: a numerical technique for calculating incompressible fluid flow, Los Alamos Scientific Laboratory, Report LA-4370.
4.Ashgriz, N. and Poo, J.Y. (1991). FLAIR (flux line-segment model for advection and interface reconstruction), Journal of Computational Physics, Vol. 93, pp 449-468.
5.Battjes, J.A. (1974). Surf similarity, Proceedings of the 14th International Coastal Engineering Conference, Vol. 1. ASCE, pp. 466- 480.
6.Burcharth, H.F. and Hughes, S.A. (2002). Fundamentals of design. In: S. Hughes (Ed.), Coastal Engineering Manual, Part VI, Design of Coastal Project Elements, Chapter VI-5, Engineer Manual 1110-2-1100. U.S. Army Corps of Engineers, Washington, DC.
7.Chan, R.K-C. and Street, R.L. (1970) A computer study of finite amplitude water waves, Journal of Computational Physics, Vol. 6, pp. 68-94.
8.Chen, C.J. and Chen, H.C. (1982) The finite-analytic method, Iowa Institute of Hydraulic Research, The University of Iowa, II HR Report 232- IV.,
9.Chen, H. C. and Patel, (1987) V. C. Laminar flow at the trailing edge of a flat plate, AIAAJ., Vol.25, pp. 920-928.
10.Dalrymple, R.A., and Rogers, B.D. (2006). Numerical modeling of water waves with the SPH method, Coastal Engineering, Vol. 53, pp. 141-147.
11.De Waal, J.P. and Van Der Meer, J.W. (1992). Wave run-up and overtopping on coastal structures, Proceedings of the 23rd International Coastal Engineering Conference,. ASCE, Vol. 2, pp. 1758– 1771.
12.Dodd, N. (1998). Numerical model of wave run-up, overtopping, and regeneration, Journal of Waterway, Port, Coastal, Ocean Eng, ASCE, Vol. 124, pp. 73-81.
13.Enright, D., Fedkiw, R., Ferziger, F. and Mitchell, I. (2002). A hybrid particle level set method for improved interface capturing, Journal of Computational Physics, Vol. 183, pp. 88-116.
14.Franco, L., De Gerloni, M., and Van der Meer, J.W. (1994). Wave overtopping on vertical and composite breakwaters, Proceedings of the 24th International Coastal Engineering Conference, ASCE. pp. 1030-1045.
15.Galvin, C.J. (1968). Breaker type classification on three laboratory beaches, Journal of Geophysical Research, Vol. 73, Issue12, pp. 3651–3659.
16.Ghia, U., Ghia, K.N. and Shin, C.T. (1982). High-Resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, Vol. 48, pp. 387-411.
17.Gobbi, M.,F., Kirby, J.T. and Wei, G E. (2000). A fully nonlinear Boussinesq model for surface wave. Part 2. Extension to O(kh) 4, Journal of Fluid Mechanics, Vol. 405, pp. 181-210.
18.Granthem, K.N. (1953). A model study of wave run-up on sloping structures, Technical Report, Series 3, Issue348, Institute of Engineering Research, University of California, Berkeley, California.
19.Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2, Journal of Fluid Mechanics, Vol. 46, pp. 611-622.
20.Hall Jr., J.V. and Watts, G.M. (1953). Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Beach Erosion Board, US Army Corps of Engineering, Vol.33.
21.Harlow, F.H. and Welch, J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, Vol. 8, pp. 2182-2189.
22.Hedges, T.S. and Reis, M.T. (1998). Random wave overtopping of simple seawalls: a new regression model, Proceedings of the Institution of Civil Engineers., Water Maritime and Energy, Vol. 30, Issue 1, pp. 1-10.
23.Heitner, K.L. and Housner, G.W. (1970). Numerical model for tsunami run-up, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 96, pp. 701–719.
24.Hibbert, S. and Peregrine, D.H. (1979). Surf and run-up on a beach :a uniform bore, Journal of Fluid Mechanics, Vol. 95, pp. 323-345.
25.Hirt, C.W. and Nichols, B.D. (1980) Volume of Fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, Vol. 39, pp. 201-225.
26.Hsiao, S.C., Hsu, T.W., Lin, T.C., Chang, Y.H. (2008) On the evolution and run-up of breaking solitary waves on a mild sloping beach, Journal of coastal engineering, Vol. 55, pp. 975-988.
27.Hughes, S.A. (2004). Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter, Coastal Engineering, Vol. 51, pp. 1085–1104.
28.Hunt, I.A. (1959). Design of seawalls and breakwaters, Journal of the Waterways and Harbors Division, ASCE, Vol. 85, no. WW3, pp. 123– 152.
29.Iribarren, C. and Nogales, C. (1949). Protection des ports, XVIIth International Naviation Congress, Sect II, Communication. pp. 31–80.
30.Iversen, H.W. (1952). Waves and breakers in shoaling water. Proc. 3rd Conf. on Coastal Eng., ASCE, pp. 1-12
31.Jiang. G.S. and Shu, C.W. (1996). Efficient implementation of weighted ENO schemes, Journal of Computational Physics, Vol. 126, pp. 202-228
32.Kennedy, A.B., Chen, Q., Kirby, J.M., and Dalrymple, R.A. (2000). Boussinesq Modeling of Wave Transformation, Breaking, and Run-up. I: 1 D, Journal of Waterway, Port, Coastal and Ocean Engineering Vol. 126, Issue 1, pp. 39-47.
33.Kikkawa, H., Shi-IGAI, H. and Kono, T. (1968). Fundamental study of wave overtopping on levees, Coastal Engineering in Japan, Vol. 8, pp. 141-151.
34.Kim, S.O. and No, H.C. (1998) Second-order model for free surface convection and interface reconstruction, International Journal of Numerical Methods in Fluids, Vol. 26, pp 79-100.
35.Kim J., Kim D. and Choi H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics, Vol. 171, pp. 132–150
36.Launder, B.E. and Spalding, D.B. (1974). The numerical computation of turbulence flows, Computer Methods In Applied Mechanics And Engineering, Vol. 3, pp. 269-289
37.Launder, B.E. and Sharma, B.I. (1989). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138
38.Lemos, C. (1992). Wave Breaking, A Numerical Study, Lecture Notes in Engineering, Vol. 71, Springer-Verlag, Berlin.
39.Li, Y. and Raichlen, F. (2002). Non-breaking and breaking solitary wave run-up, Journal of Fluid Mechanics, Vol. 456, pp. 295–318.
40.Li, Y., and Raichlen, F. (2003). Energy balance model for breaking solitary wave runup, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 129, no. 2, , pp. 47– 59.
41.Lin, C.Y. (2007). Simulation of Breaking Waves Using Particle Level Set Method, PhD. Dissertation, National Cheng Kung University, Taiwan.
42.Lin, P. and Liu, P.L.-F. (1998a). A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, Vol. 359, pp. 239-264.
43.Lin, P. and Liu, P.L.-F. (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone, Journal of Geophysics Research, Vol. 103 (C8), pp. 15677–15694.
44.Liu, P.L.-F., Park, Y.S., and Cowen, E.A. (2007) Boundary layer flow and bed shear stress under a solitary wave, Journal of Fluid Mechanics, Vol. 574, pp. 449-467.
45.Mizuguchi, M., (1993) Wave overtopping rate over a vertical wall and reflection coefficient, Coastal Engineering in Japan, Vol. 36, No. 1, pp.37-47.
46.Miyata, H. and Nishimura, S. (1985). Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, Journal of Computational Physics, Vol. 60, pp. 391-436.
47.Mohd-Yusof, J. (1997). Combined immersed boundary/B-spline method for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, pp. 317-327.
48.Monaghan, J.J. (1994). Simulating free surface flows with SPH, Journal of Computational Physics, Vol. 110, pp.399–406.
49.Osher, S. and Sethian, J. (1988). Front propagation with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, Journal of Computational Physics, Vol. 79, pp. 12-49.
50.Owen, M. (1980). Design of seawalls allowing for wave overtopping, Report EX 924, HR Wallingford, United Kingdom.
51.Park, S.P., Kim, E.Y., Kim, D.I. et al. (1998). Systems for production of calves from Hanwoo (Korean Native Cattle) IVM/IVF/IVC blastocyst I. Hanwoo IVM/IVF/IVC blastocyst cryopreserved by vitrification. Kor. J. Anim. Reprod., Vol. 22, pp. 349–357.
52.Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, Myungjoo (1999). A PDE-baed fast local level set method, Journal of Computational Physics, Vol. 155, pp 410-438.
53.Peregrine, D. (1967). Long waves on a beach, Journal of Fluid Mechanics, Vol. 27, Issue 4, pp. 815-827.
54.Sakakiyama, T. and Liu, P. (2001). Laboratory experiments for wave motions and turbulence flows in front of a breakwater, Coastal Engineering, Vol. 44, Issue 2, pp. 117-139.
55.Saville Jr., T. (1955). Laboratory data on wave run-up and overtopping on shore structure, Technical Memorandum No.64, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, DC.
56.Shao, S., Ji, C., Graham, D.I., Reeve, D.E., James, P.W., and Chadwick, A.J. (2006). Simulation of wave overtopping by an incompressible SPH model, Coastal Engineering, Vol. 53, pp.723-735.
57.Shu, C.W. and Osher, S. (1989) Efficient implementation of essentially Non-Oscillatory Shock-Capturing Schemes, Ⅱ, Journal of Computational Physics, Vol. 83, pp. 32-78.
58.Stansby, P.K. and Feng, T. (2004). Surf zone wave overtopping a trapezoidal structure: 1-D modelling and PIV comparison, Coastal Engineering, Vol. 51, pp. 483-500.
59.Synolakis, C.E. (1986). The run-up of long waves, PhD Thesis, California Institute of Technology, Pasadena, California.
60.Takada, A. (1970). On relations among wave run-up, overtopping and reflection, Proc. of JSCE, Vol. 182, pp. 19-30.
61.Tang, C. J., Patel, V. C. and Landweber, L. (1990). Viscous effects on propagation and reflection of solitary waves in shallow channels, Journal of Computational Physics, Vol. 88, No. 1, pp. 86-113.
62.Titov, V.V. and Synolakis, C.E. (1995). Modeling of breaking and non-breaking long-wave evolution and run-up using VTCS-2, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 121, pp. 308-461.
63.Tomé, M.F. and McKee,S. (1994). GENSMAC: a computational marker-and-cell method for free surface flows in general domains, Journal of Computation Physics, vol. 110, pp. 171-186.
64.Tominaga, M. and Sakuma, N. (1970). On wave overtopping rate over sea walls, Proc. 17th Japanese Conference on Coastal Engineering, pp. 133-140.
65.Van der Meer, J. W., and Janssen, J. P. F. M. (1995). Wave run-up and wave overtopping at dikes, Wave forces on inclined and vertical wall structures, Ch. 1, pp. 1-27 ,ASCE.
66.Van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures, PhD Thesis, Delft University of Technology.
67.Wei, G., J. Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, Journal of Fluid Mechanics, Vol. 294, pp. 71-92.
68.Wiegel, R. (1964). Oceanographical Engineering, Prentice Hall, Inc., New Jersey.
69.Youngs, D.L., K.W Morton and M. J. Baineks, (1982) Numerical Methods for Fluid Dynamics, Academic, New York.
70.Zelt, J.A. (1991). The run-up of nonbreaking and breaking solitary waves, Coastal Engineering, Vol.15, pp. 205–246.
71.陳韋嘉 (2008) 孤立波碎波通過不透水斜坡式海堤之試驗研究,國立成功大學水利及海洋工程研究所碩士論文.72.經濟部水利署(www.wra.gov.tw/public/Data/81814345671.xls)