|
1.Tundo, P., et al., Synthetic pathways and processes in green chemistry. Introductory overview. Pure and Applied Chemistry, 2000. 72(7): p. 1207-1228. 2.Anastas P.T., W.J.C., Green Chemistry: Theory and Practice. 1998: Oxford Univ. Press. 3.Fierro, J.L.G., J.M. Campos-Martin, and G. Blanco-Brieva, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angewandte Chemie-International Edition, 2006. 45(42): p. 6962-6984. 4.Jones, C.W., Application of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry. 1990, London: Royal Society of Chemistry. 5.Thenard, L.J., Ann. Chim. Phys., 1818. 8: p. 306. 6.Samanta, C., Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis a-General, 2008. 350(2): p. 133-149. 7.Chen, Q., Toward cleaner production of hydrogen peroxide in China. Journal of Cleaner Production, 2006. 14(8): p. 708-712. 8.Chen, Q., Chemical Engineering and Processing: Process Intensification, 2008. 47: p. 787. 9.Centi, G., Perathoner,S., and Abate,S. , Direct Synthesis of Hydrogen Peroxide: Recent Advances, in Modern Heterogeneous Oxidation Catalysis, N. Mizuno, Editor, WIley, VCH. p. 253. 10.Henkel, H.a.W., W., U. Patent, Editor. 1914. 11.Lewis, B.a.V.E., G, Combustion, Flames and Explosions in Gases. 2 ed. 1961, New York: Academic Press. 12.Choudhary, V.R., C. Samanta, and A.G. Gaikwad, Drastic increase of selectivity for H2O2 formation in direct oxidation of H-2 to H2O2 over supported Pd catalysts due to their bromination. Chemical Communications, 2004(18): p. 2054-2055. 13.Maraschino, M.J., U.S. Patent, Editor. 1992. 14.Choudhary, V.R., Samanta,C. , J. Catal., 2006. 238: p. 28. 15.Choudhary, V.R., Jana,P. , J. Catal., 2007. 246: p. 434. 16.Choudhary et al, V.R., Appl. Catal., 2007. 234: p. 317. 17.Gosser, L.W.D.P., U. Patent 4,832,938, Editor. 1989. 18.Gosser, L.W., Schwartz,J.A.T. (Du Pont), U. Patent 4,772,458, Editor. 1988. 19.Gosser, L.W., Schwartz,J.A.T. (Du Pont), U. Patent 4,889,705, Editor. 1989. 20.Gosser, L.W., Paoli,M.A. (Du Pont), U. Patent 5,135,731, Editor. 1992. 21.Schwartz, J.A.T.D., U. Patent 5,128,114 (1992); 5,352,645 (1994), Editor. 22.Zhou, B.a.L., L.-K, U. Patent, Editor. 2001, Hydrocarbon Techn. Inc. (US). 23.Melada, S., Pinna, F., Strukul, G. et al, Journal of Catalysis, 2006. 237(213). 24.Jones, C.A., Grey,R.A. (Arco Chemical), U. Patent, Editor. 2002. 25.Landon, P., et al., Direct formation of hydrogen peroxide from H-2/O-2 using a gold catalyst. Chemical Communications, 2002(18): p. 2058-2059. 26.Landon, P., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 using Pd and Au catalysts. Physical Chemistry Chemical Physics, 2003. 5(9): p. 1917-1923. 27.Edwards, J.K., et al., Direct synthesis of hydrogen peroxide from H-2 andO(2) using Au-Pd/Fe2O3 catalysts. Journal of Materials Chemistry, 2005. 15(43): p. 4595-4600. 28.Edwards, J.K., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis, 2005. 236(1): p. 69-79. 29.Landon, P., Ferguson,J., Solsona,B.E., Garcia,T., Al-Sayari,S., Carley,A.F., Herzing,A., Hutchings,G.J., Chem. Mater., 2006. 18(2689). 30.Hutchings, G.J., et al., Comparison of supports for the direct synthesis of hydrogen peroxide from H-2 and O-2 using Au-Pd catalysts. Catalysis Today, 2007. 122(3-4): p. 397-402. 31.Li, G., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 using zeolite-supported Au catalysts. Catalysis Today, 2006. 114(4): p. 369-371. 32.Li, G., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 and in situ oxidation using zeolite-supported catalysts. Catalysis Communications, 2007. 8(3): p. 247-250. 33.Okumura, M., Kitagawa,Y., Yamagchuhi,K., Akita,T., Tsubota,S., Haruta M. , Chem. Lett, 2003. 32(822). 34.Ishihara T. , O.Y., Yoshida S. , Hata Y., Nishiguchi H. , Takita Y. , Appl. Catal. A: Gen, 2005. 291(215). 35.Ishihara, T., Hata,Y. , Nomura, Y., Kaneko,K. , Matsumoto,H. , Chem. Lett, 2007. 36(878). 36.Ma, S., Li,G., Wang,X., Chem. Lett, 2006. 35(428). 37.Choudhary, V.R., Samanta,C. , Choudhary,T.V. , Appl. Catal. A: Gen, 2006. 308(128). 38.Hutchings, G.J., et al., Direct synthesis of hydrogen peroxide from H-2 and O-2 using zeolite-supported Au-Pd catalysts. Catalysis Today, 2007. 122(3-4): p. 361-364. 39.Han, Y.-F., Zhong,Z., Ramesh,K., Chen,F., Chen,L., White,T., Tay Q., Nurbaya S., Wang Z., J. Phys. Chem., 2007. C111(8410). 40.Lunsford, J.H., J. Catal., 2003. 216: p. 455. 41.Edwards, J.K., et al., Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H-2 and O-2. Green Chemistry, 2008. 10(4): p. 388-394. 42.Hutchings, G.J., et al., Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, 2009. 323(5917): p. 1037-1041. 43.Pritchard, J.C., et al., The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry, 2010. 12(5): p. 915-921. 44.Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B-Environmental, 2009. 88(1-2): p. 1-24. 45.Cameron, D.S., Cooper,S.J., Dodgson,I.L., Harrison,B., Jenkins,J.W., Catal. Today 7, 1990. 113. 46.Torres, G.C., Jablonski,E.I., Baronetti,G.T., Castro,A.A., de Miguel,S.R., Scelza,O.A., Blanco,M.D., Pena-Jimenez,M.A., Fierro,J.L.G. , Appl. Catal. A, 1997. 161(231). 47.Prado-Burguete, C., Linares-Solano,A., Rodriguez-Reinoso,F., Lecea,C.S.M., J. Catal., 1989. 115(98). 48.Suh, D.J., Park,T.J., Ihm,S.K., Carbon, 1993. 31(427). 49.Miguel, S.R., Scelza,O.A., Roman-Martinez, M.C., Lecea, C.S.M., Cazorla-Amoros,D., Linares-Solano,A. , Appl. Catal. A, 1998. 170(93). 50.Bonnemann, H.R., R. M., Eur. J. Inorg. Chem, 2001. 2455. 51.Burda, C.C., X.-B.; Narayanan, R.; El-Sayed, M. A., Chem. Rev., 2005. 105: p. 1025. 52.Bonnemann, H.B., W., in Metal Clusters in Chemistry, Weinheim, Editor. 1999. p. 913. 53.Goia, D.V.M., E., New J. Chem., 1998. 22: p. 1203. 54.Turkevich, J.a.K., G. , Science, 1970. 169: p. 873. 55.Harada, M., Asakura,K. and Toshima,N. , J. Phys. Chem., 1993. 97: p. 5103. 56.Schmid, G., West,H., Malm,J.-O., Bovin,J.-O. and Grenthe,C. , Chem. Eur. J., 1996. 2: p. 1099. 57.Albery W.J., H.M.L., Ring-Disc Electrodes 1971: Oxford: Clarendon Press 58.LaConti A.B. , M.M., McDonald R.C., in: Vielstich W., Gasteiger H.A., and L. A.(Eds.), Handbook of Fuel Cells. 2003, John Wiley & Sons: New York. p. 648. 59.Kishi A., I.M., Umeda M., J. Phys. Chem., 2010. C 114(1110). 60.Yehia, H., Condit,David A., Burlatsky,Sergei F., Madden,Thomas H. . 61.Maruyama, J., Inaba,M., Ogumi,Z. , J. Electroanal. Chem., 1998. 458(175). 62.Inaba, M., Yamada,H., Tokunaga,J., Tasaka,A. , Electrochem. Solid-State Lett, 2004. 7(A474). 63.Bard, A.J., Faulkner,L.R., Electrochemical Methods: Fundamentals and Applications. 2nd Ed ed. 2001, NY: John Wiley & Sons, Inc. 64.Antoine, O., Durand,R. , J. Appl. Electrochem, 2000. 30(839). 65.Bard, A.J., Faulkner,Larry R. , Electrochemical Methods: Fundamentals and Applications. 2nd edition ed. 2000. 66.Zoski, C.G., Handbook of Electrochemistry. 2007: Elsevier Science. 67.Komarneni, S.L., D.S.; Newalkar, B.; Katsuki, H.; Bhalla, A.S., Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 2002. 18(5959). 68.Chen, W.X.L., J.Y.; Liu, Z.L., Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem. Commun., 2002. 2588. 69.Liu, Z.L.H., L.; Tham, M.P.; Lim, T.H.; Jiang, H.X., Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sources, 2006. 161: p. 831. 70.Liu, Z.L.G., B.; Chan, S.H.; Tang, E.H.; Hong, L, Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J. Power Sources, 2008. 176: p. 306. 71.Huang, J.S.Z., X.G.; Luo, J.M.; Sun, J.Y.; Yang, W.J, Oxygen reduction reaction on (Pt–NbPOx)/MWCNTs electrodes prepared by microwave irradiation method. J. Solid State Electrochem., 2008. 12: p. 113. 72.Hwang, B.J., et al., Size and alloying extent dependent physiochemical properties of Pt-Ag/C nanoparticles synthesized by the ethylene glycol method. Journal of Physical Chemistry C, 2008. 112(7): p. 2370-2377. 73.Sarma, L.S., et al., Formation of Pt-Ru nanoparticles in ethylene glycol solution: An in situ X-ray absorption spectroscopy study. Langmuir, 2007. 23(10): p. 5802-5809. 74.von Bordwehr, S., A History of the X-ray Absorption Fine Structure. Ann. Phys. Fr, 1989. 14: p. 377-466. 75.Hwang, B.J., Sarma, L. S., Chen, J. M., Chen, C. H., Liu, D. G., Lee, J. F., and Tang, M. T., J. Am. Chem. Soc., 2005. 127: p. 11140-11145. 76.M., P.L.R., J. Catal.,, 1998. 176(552). 77.Bazin, D., Guczi, L., Lynch, J., Anomalous wide angle X-ray scattering (AWAXS) and heterogeneous catalysts. Appl. Catal. A: Gen, 2002. 226: p. 87–113. 78.Iwasawa, Y., X-ray absorption spectroscopy for catalysts and surfaces. World Scientific. 1996, Singapore. 79.Grundwaldt, J.D.C., M.; Hannemann, S.; Baiker, A., X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys. Chem. Chem. Phys., 2004. 6: p. 3037–3047. 80.Hwang, B.J., et al., Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. Acs Nano, 2007. 1(2): p. 114-125.
|