跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊蕓瑋
研究生(外文):Yun-Wei Yang
論文名稱:具逆境耐性差異之水稻幼苗(台農67號與台中在來1號)其地上部與地下部於低溫、鹽逆境及回復處理下之比較轉錄體學分析
論文名稱(外文):Comparative Analyses of Shoots and Roots Transcriptomics of Two Rice Seedlings (TNG67 vs. TCN1) under Cold or Salt Stress and Subsequent Recovery
指導教授:張孟基
指導教授(外文):Men-Chi Chang
口試委員:吳素幸林詩舜侯新龍洪傳揚鄭萬興劉力瑜
口試委員(外文):Shu-Hsing WuShih-Shun LinShin-Lon HoChwan-Yang HongWan-Hsing ChengLi-Yu Liu
口試日期:2015-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:159
中文關鍵詞:水稻低溫高鹽微陣列分析
外文關鍵詞:Rice (Oryza sativa L.)cold tolerancegene expression profilingtranscription factorplant hormonehomeostasissalt toleranceion transporter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
近年來氣候變遷與環境變化所產生之逆境愈形劇烈,在各種非生物逆境下將導致作物品質與產量的水平下降,進而影響全球糧食的供給。隨著水稻基因組的解碼與功能性基因體技術的進步,專家學者們將能更進一步了解水稻抗逆境的機制並探索耐逆境相關的重要基因,以加速耐逆境水稻的育種過程。在此論文中,我們利用可耐低溫與鹽逆境之梗稻品種台農67號與對此兩種逆境敏感之秈稻品種台中在來1號為材料,並使用水稻表達譜晶片Rice OneArray® v1為轉錄分析平台進行研究。除了分析兩品種的莖部與根部於逆境下的基因表現,我們更進一步分析於逆境處理後之回復期的基因變化。結果顯示,台農67號於低溫下會促進檸檬酸循環(tricarboxylic acid)與程序性細胞凋亡 (programmed cell death);於鹽逆境處理下會透過無氧呼吸(fermentation)產生能量並於鹽回復處理下提升卡爾文循環。此外,鹽逆境下Salt Overly Sensitive (SOS) 排鹽機制似乎對台農67號的耐鹽性有部分貢獻。根據與賀爾蒙相關之基因的表現趨勢進行推測,低溫下增強對離層酸(abscisic acid)、多元胺(polyamine)、茉莉花酸(jasmonic acid)與生長素(auxin)的反應會提升其低溫耐性。鹽逆境下,除了增加對離層酸、多元胺、茉莉花酸、生長素與乙烯(ethylene)的反應外,同時也需降低其對激勃素(gibberellin)及細胞分裂素(cytokinins)之反應,此結果顯示不同賀爾蒙之間的協同作用對耐鹽性之重要。而逆境消退後,乙烯與細胞分裂素的共同作用有利於水稻歷經低溫逆境後回復生長,而茉莉花酸則是參與在鹽逆境之回復期。在轉錄因子的調控方面,NAC與WRKY型之轉錄因子與低溫耐性具相關性,而MYB與AP2/ERF型之轉錄因子則可能參與耐鹽性機制。此外,兩品種於低溫與鹽逆境下所呈現出的“具差異性表現之基因”(differentially expressed genes)非常不同。雖然低溫與鹽逆境會導致類似的表徵性狀與生理損害,然而由其基因之表現可知,兩者於細胞層次上的分子調控機制存在很大的差異。若能愈清楚地了解水稻之低溫與鹽逆境耐性的機制,將有助於我們日後更精準的育成具不同非生物性逆境耐性的品種。


Abstract

Climate changes and environmental stresses become severe over the past few decades. In particular, different abiotic stresses reduce the yield and quality of crop, leading to the threaten of global food security. With the deciphering of rice genome and advancement of functional genomics technology, researchers were able to gradually reveal the mechanism of abiotic stress tolerance mechanisms in rice and to identify essential genes for breeding to improve stress tolerance. In this thesis, we used TNG67 (japonica) and TCN1 (indica) rice cultivars with contrastive tolerance to cold and salt stresses as studying materials. A custom designed oligonucleotide array, Rice OneArray® v1 microarray platform (Phalanx Biotech Group Inc.) was used for transcriptomic analysis of shoot and root tissues of these two cultivars under cold or salt treatment and subsequent recovery. The results showed that TNG67 which is tolerant to cold and salt stresses can enhance TCA (tricarboxylic acid) cycle and PCD (programmed cell death) pathways under cold stress while it shifts to fermentation pathway for energy production and enhances the efficiency of Calvin cycle under salt stress and recovery, respectively. In addition, activation of SOS pathway may partially contribute to salt tolerance of TNG67. Increase of genes expressions related to phytohormone biosynthesis and response of ABA, PA, JA, and auxin can help TNG67 in cold stress tolerance. Besides, maintaining the balance and crosstalk of different hormones through the induction of gene expressions related to ABA, ET, PA, auxin, JA and the decrease of gene expressions associated with GA and CK responses may also be quite important for salt tolerance of TNG67. The crosstalk of ET with CK and JA in rice may play a role in the restoration of cold and salt stress. Also, we investigated the possible transcription factors (TFs) which may be the candidate genes that control cold or salt stress tolerance in rice. The induction or repression of TFs under stresses includes NACs and WRKYs, and MYB and AP2/ERF. NACs and WRKYs were the major TFs that may participate in cold tolerance, and MYB and AP2/ERF may involve in salt stress tolerance. Taken together aforementioned results, the cold- and salt-tolerance exhibit distinct regulatory mechanisms in TNG67 vs. TCN1. Interestingly, comparing the DEGs in shoots or roots of both rice cultivars under stresses, the venn diagram analysis showed that TNG67 and TCN1 shared less differentially expressed genes (DEGs) between cold and salt treatment. Although cold and salt stress can cause similar phenotypes and physiological damages, the molecular basis of cellular regulation mechanism can be quite different. Understanding the difference of cold and salt tolerance mechanisms in details is important in the future for us to breed rice precisely to cope with various abiotic stresses.


Table of Contents
摘要 i
Abstract iii
Table of Contents 1
Tables 3
Figures 4
Abbreviations 6
Chapter 1 7
General introduction 7
Chapter 2 10
Comparative transcriptomics analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones, and transcription factors 10
Abstract 10
Introduction 11
Materials and Methods 16
Results 19
Discussion 34
Conclusions 47
Chapter 3 81
Transcriptomics analysis of shoots and roots in contrary salt-tolerance cultivars of TNG67 and TCN1 rice seedlings under salt stress and subsequent recovery 81
Abstract 81
Introduction 82
Materials and Methods 86
Results 87
Discussion 99
Conclusions 112
Chapter 4 136
Overall Conclusions and Future Perspectives 136
References 143



References
1.Echevarría-Zomeño S, Yángüez E, Fernández-Bautista N, Castro-Sanz A, Ferrando A, Castellano M. Regulation of translation initiation under biotic and abiotic stresses. Int. J. Mol. Sci. 2013;14(3):4670-83.
2.Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011;14(3):290-5.
3.Schachtman DP, Goodger JQD. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008;13(6):281-7.
4.Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490(7421):497-501.
5.Sequencing ProjectInternational Rice G. The map-based sequence of the rice genome. Nature. 2005;436(7052):793-800.
6.Baena-González E. Energy signaling in the regulation of gene expression during stress. Mol. Plant. 2010;3(2):300-13.
7.Arbona V, Manzi M, Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013;14(3):4885-911.
8.Lee T-M, Chu C. Regulation of chilling tolerance in rice seedlings by plant hormones. Korean J. Crop Sci. 1992;37:288-98.
9.Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant, Cell Environ. 1993;16(5):481-90.
10.Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings.: II. Modulation of free polyamine levels. Plant Sci. 1997;126(1):1-10.
11.Lee TM, Lur HS, Lin YH, Chu C. Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell Environ. 1996;19(1):65-74.
12.Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444-51.
13.Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004;37(1):115-27.
14.Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, et al. Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007;143(4):1739-51.
15.Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 2008;67(1-2):169-81.
16.Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA Gel-Blot analyses. Plant Physiol. 2003;133(4):1755-67.
17.Zhang F, Huang L, Wang W, Zhao X, Zhu L, Fu B, et al. Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics. 2012;13(1):461.
18.Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, et al. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One. 2012;7(8):e43274.
19.Chawade A, Lindlöf A, Olsson B, Olsson O. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi. PLoS One. 2013;8(12):e81729.
20.Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, et al. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics. 2007;8(1):175.
21.Yun KY, Park M, Mohanty B, Herath V, Xu F, Mauleon R, et al. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 2010;10(1):1-29.
22.Fennell A, Markhart AH. Rapid acclimation of root hydraulic conductivity to low temperature. J. Exp. Bot. 1998;49(322):879-84.
23.Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins. Plant and Cell Physiol. 2012;53(8):1445-56.
24.Narsai R, Castleden I, Whelan J. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biol. 2010;10(1):262.
25.Chen JS, Lin SC, Chen CY, Hsieh YT, Pai PH, Chen LK, et al. Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues. BMC Res. Notes. 2014;7(15):1-9.
26.Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914-39.
27.Jung KH, An G. Application of MapMan and RiceNet drives systematic analyses of the early heat stress transcriptome in rice seedlings. Journal of Plant Biology. 2013;55(6):436-49.
28.Kohli A, Sreenivasulu N, Lakshmanan P, Kumar P. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 2013;32(7):945-57.
29.Welsch R, Wust F, Bar C, Al-Babili S, Beyer P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol. 2008;147(1):367-80.
30.Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-30.
31.Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol. 2008;148(2):1094-105.
32.Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 2004;37(5):720-9.
33.Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science. 2006;311(5757):91-4.
34.Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 2011;23(6):2169-83.
35.Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem. 2010;285(30):23371-86.
36.Rahman A. Auxin: a regulator of cold stress response. Physiol Plant. 2013;147(1):28-35.
37.Du H, Liu H, Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci. 2013;4.
38.Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 2013.
39.Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 2005;137(1):176-89.
40.Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, et al. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 2010;10(1):16.
41.Cruz RPd, Sperotto RA, Cargnelutti D, Adamski JM, de FreitasTerra T, Fett JP. Avoiding damage and achieving cold tolerance in rice plants. Food and Energy Security. 2013;2(2):96-119.
42.Palavan-Unsal N, Buyuktuncer ED, Tufekci MA. Programmed cell death in plants. J. Cell. Mol. Biol. 2005;4:9-23.
43.Broemer M, Meier P. Ubiquitin-mediated regulation of apoptosis. Trends Cell Biol. 2009;19(3):130-40.
44.Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav. 2009;4(10):924-7.
45.Aroca R, Tognoni F, Irigoyen JJ, Sanchez-Diaz M, Pardossi A. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol. Biochem. 2001;39(12):1067-73.
46.Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013;162(4):2028-41.
47.Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiol. 2011.
48.Ren H, Wei K, Jia W, Davies WJ, Zhang J. Modulation of root signals in relation to stomatal sensitivity to root-sourced abscisic acid in drought-affected plants. J. Integr. Plant Biol. 2007;49(10):1410-20.
49.Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578-95.
50.Usadel B, BlÄSing OE, Gibon Y, Poree F, HÖHne M, GÜNter M, et al. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant, Cell Environ. 2008;31(4):518-47.
51.Cook D, Fowler S, Fiehn O, Thomashow MF. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. 2004;101(42):15243-8.
52.Alcázar R, Marco F, Cuevas J, Patron M, Ferrando A, Carrasco P, et al. Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters. 2006;28(23):1867-76.
53.Reaney MJT, Gusta LV, Abrams SR, Robertson AJ. The effects of abscisic acid, kinetin, and gibberellin on freezing tolerance in smooth bromegrass (Bromus inermis) cell suspensions. Can. J. Bot. 1989;67(12):3640-6.
54.Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. 2007;104(51):20623-8.
55.Matsuda O, Sakamoto H, Nakao Y, Oda K, Iba K. CTD phosphatases in the attenuation of wound-induced transcription of jasmonic acid biosynthetic genes in Arabidopsis. Plant J. 2009;57(1):96-108.
56.Gehring CA, Irving HR, McConchie R, Parish RW. Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann. Bot. 1997;80(4):485-9.
57.Suhita D, Raghavendra AS, Kwak JM, Vavasseur A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-Induced stomatal closure. Plant Physiol. 2004;134(4):1536-45.
58.Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y. Involvement of edogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 2011;156(1):430-8.
59.Wyatt SE, Rashotte AM, Shipp MJ, Robertson D, Muday GK. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli. Plant Physiol. 2002;130(3):1426-35.
60.Shibasaki K, Uemura M, Tsurumi S, Rahman A. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell. 2009;21(12):3823-38.
61.Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51(4):617-30.
62.Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, et al. Genome-wide analysis of NAC transcription factor family in rice. Gene. 2010;465(1–2):30-44.
63.Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenço T, Chander S, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J. Exp. Bot. 2012.
64.Valverde F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J. Exp. Bot. 2011.
65.Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene. 2012;496(2):110-7.
66.Fowler SG, Cook D, Thomashow MF. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005;137(3):961-8.
67.Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012.
68.Wang Y, Guo H, Li H, Zhang H, Miao X. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. BMC Genomics. 2012;13(1):1-12.
69.D''Agostino IB, Deruère J, Kieber JJ. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000;124(4):1706-17.
70.Woeste KE, Vogel JP, Kieber JJ. Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol. Plant. 1999;105(3):478-84.
71.Vogel JP, Woeste KE, Theologis A, Kieber JJ. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. 1998;95(8):4766-71.
72.Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651-81.
73.Jacoby RP, Taylor NL, Millar AH. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 2011;16(11):614-23.
74.Tadege M, Dupuis I, Kuhlemeier C. Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci. 1999;4(8):320-5.
75.Takahashi S, Murata N. Interruption of the calvin cycle inhibits the repair of photosystem II from photodamage. Biochim. Biophys. Acta. 2005;1708(3):352-61.
76.Ye N, Jia L, Zhang J. ABA signal in rice under stress conditions. Rice. 2012;5(1):1-9.
77.Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, et al. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J. Agron. Crop Sci. 2005;191(4):273-82.
78.Prakash L, Prathapasenan G. NaCl-and gibberellic acid-induced changes in the content of auxin and the activities of cellulase and pectin lyase during leaf growth in rice (Oryza sativa). Ann. Bot. 1990;65(3):251-7.
79.Sawada H, Shim IS, Usui K. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—Modulation by salt stress in rice seedlings. Plant Sci. 2006;171(2):263-70.
80.Koh S, Lee SC, Kim MK, Koh J, Lee S, An G, et al. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 2007;65(4):453-66.
81.Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 2001;160(5):869-75.
82.Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 2002;163(5):987-92.
83.Kumar K, Kumar M, Kim SR, Ryu H, Cho YG. Insights into genomics of salt stress response in rice. Rice. 2013;6(1):1-15.
84.Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 2000;124(3):941-8.
85.Martínez Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, et al. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007;143(2):1001-12.
86.Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium. 2014;56(2):81-95.
87.Singh AK, Kumar R, Tripathi AK, Gupta BK, Pareek A, Singla-Pareek SL. Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice. 2015;8:21.
88.Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta. 2011;233(1):175-88.
89.Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 2006;11(8):372-4.
90.Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics. 2008;280(5):437-52.
91.Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, et al. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 2005;139(2):822-35.
92.Cotsaftis O, Plett D, Johnson AAT, Walia H, Wilson C, Ismail AM, et al. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol. Plant. 2011;4(1):25-41.
93.Jiang SY, Ma A, Ramamoorthy R, Ramachandran S. Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol. Evol. 2013;5(11):2032-50.
94.Chen HC, Hwang SG, Chen SM, Shii CT, Cheng WH. ABA-mediated heterophylly is regulated by differential expression of 9-cis-epoxycarotenoid dioxygenase 3 in lilies. Plant Cell Physiol. 2011;52(10):1806-21.
95.Theerawitaya C, Boriboonkaset T, Cha-um S, Supaibulwatana K, Kirdmanee C. Transcriptional regulations of the genes of starch metabolism and physiological changes in response to salt stress rice (Oryza sativa L.) seedlings. Physiol. Mol. Biol. Plants 2012;18(3):197-208.
96.Bucher M, Brander K, Sbicego S, Mandel T, Kuhlemeier C. Aerobic fermentation in tobacco pollen. Plant. Mol. Biol. 1995;28(4):739-50.
97.Rocco M. Metapontum forest reserve: salt stress responses in Pinus halepensis. Am. J. Plant Sci. 2013;04(03):674-84.
98.Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biol. Med. 2013;56(0):89-101.
99.Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, et al. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J. 2005;43(6):861-72.
100.Järvi S, Suorsa M, Aro EM. Photosystem II repair in plant chloroplasts — Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim Biophys Acta. 2015;1847(9):900-9.
101.Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta. 2010;1804(4):929-40.
102.Yang L, Zu YG, Tang ZH. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ. Exp. Bot.. 2013;86(0):60-9.
103.Cao YR, Chen SY, Zhang JS. Ethylene signaling regulates salt stress response: An overview. Plant Signal Behav. 2008;3(10):761-3.
104.Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 1993;72(3):427-41.
105.Lefèvre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci. 2001;161(5):943-52.
106.Ioannidis NE, Sfichi L, Kotzabasis K. Putrescine stimulates chemiosmotic ATP synthesis. Biochim. Biophys. Acta. 2006;1757(7):821-8.
107.Ioannidis NE, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim. Biophys. Acta. 2007;1767(12):1372-82.
108.Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014;217(1):67-75.
109.Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 2008;18(9):656-60.
110.Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J. Plant Physiol. 2013;170(2):220-4.
111.Zolla G, Heimer YM, Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J. Exp. Bot. 2010;61(1):211-24.
112.Zhao Y, Wang T, Zhang W, Li X. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol. 2011;189(4):1122-34.
113.Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol. Bioinform. Online. 2012;8:321-55.
114.Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J. 2011;67(3):472-84.
115.Pegoraro C, Farias DR, Mertz LM, Santos RS, Maia LC, Rombaldi CV, et al. Ethylene response factors gene regulation and expression profiles under different stresses in rice. Theor. Exp. Plant Physiol. 2013;25:261-74.
116.Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, et al. A gene expression profiling of early rice stamen development that reveals inhibition of photosynthetic genes by OsMADS58. Mol. Plant. 2015.
117.Zhang F, Huang LY, Zhang F, Ali J, Cruz CV, Zhuo DL, et al. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics. 2015;16(1):111.
118.Mujahid H, Tan F, Zhang J, Nallamilli BRR, Pendarvis K, Peng Z. Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Sci. 2013;11(1):26-.
119.Heang D, Sassa H. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breeding Sci. 2012;62(2):133-41.
120.Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol. Biochem. 2009;47(9):785-95.
121.Shaar Moshe L, Hübner S, Peleg Z. Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biol. 2015;15(1):1-18.
122.Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res. 2005;15(8):593-603.
123.Kim S, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, et al. The bHLH Rac Immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity. Plant Cell Physiol. 2012;53(4):740-54.
124.dos Santos R, Krüger M, Pegoraro C, Madabula F, da Maia L, Rombaldi C, et al. Transcriptional regulation of seven erfs in rice under oxygen depletion and iron overload stress. Tropical Plant Biol. 2013;6(1):16-25.
125.Guo K, Zou W, Feng Y, Zhang M, Zhang J, Tu F, et al. An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics. 2014;15(1):596.
126.Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol. 2014;14:158-.
127.Iraki NM, Bressan RA, Hasegawa PM, Carpita NC. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol. 1989;91(1):39-47.
128.Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, et al. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp. Bot. 2007;58(2):211-9.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top