跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉濰綸
研究生(外文):Wei-LunLiu
論文名稱:功能性梯度材料三明治板受雙軸壓力作用之三維挫屈分析
論文名稱(外文):Three-dimensional buckling analysis of functionally graded material sandwich plates under bi-axial compressive loads
指導教授:吳致平
指導教授(外文):Chih-Ping Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:Reissner混合變分原理計算模型有限元素法功能性梯度材料挫屈
外文關鍵詞:Reissner’s mixed variational theoremcomputational modelingfinite layer methodsfunctionally graded materialsbucklingplates.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出基於Reissner 混合變分原理(Reissner mixed variational theorem,RMVT)之有限層狀元素法(finite rectangular layer methods, FRLMs)應用於具簡支承正交性複合材料矩形板以及功能性材料三明治矩形板受雙軸壓作用之三維線性挫屈分析。文中假設功能性梯度材料的材料參數沿厚度方向以冪級數型態分布。文中將平板細分為數個有限層板,並利用傅立葉函數與Lagrange 多項式函數對每一離散層各面內與面外變數進行內插,利用h-refinement 程序進行收斂性分析。此外,本文將沿著厚度方向改變形狀函數的次數來提高精度,並探討次數的高低對收斂性以及準確性造成的影響,其中本有限層狀法求得的解亦與文獻中三維彈性力學正解以及精準二維數值解進行綜合比較。
Based on the Reissner mixed variational theorem (RMVT), finite rectangular
layer methods (FRLMs) are developed for the three-dimensional (3D) linear
buckling analysis of simply-supported, fiber-reinforced composite material (FRCM)
and functionally graded material (FGM) sandwich plates subjected to bi-axial
compressive loads. In this work, the material properties of the FGM layers are
assumed to obey the power-law distributions of the volume fractions of the
constituents through the thickness, and the plate is divided into a number of finite
rectangular layers, in which the trigonometric functions and Lagrange polynomials
are used to interpolate the in- and out-of-plane variations of the field variables of
each individual layer, respectively, and an h-refinement process is adopted to yield
the convergent solutions. The accuracy and convergence of the RMVT-based
FRLMs with various orders used for expansions of each field variables through the
thickness are assessed by comparing their solutions with the exact 3D and accurate
two-dimensional ones available in the literature.
Contents
Abstract I
Abstract(in Chinese) II
Acknowledgement(in Chinese) III
Contents IV
List of tables V
List of figures VII
Chapter 1 Introduction 1
Chapter 2 Pre-buckling state in a multilayered FGM plate 6
Chapter 3 Perturbed state in a multilayered FGM plate
3.1 The kinematic and kinetic assumptions 10
3.2 The Reissner mixed variational theorem 13
3.3 Euler-Lagrange equations 15
Chapter 4 Illustrative examples
4.1 Laminated composite plates 19
4.2 FGM sandwich plates 23
Chapter 5 Concluding remarks 28
References 29
Appendix 59
Tables 60
Figures 64
References
Akhras, G., Li, W.C. (2007), “Three-dimensional static, vibration and stability
analysis of piezoelectric composite plates using a finite layer method, Smart
Mater. Struct., 16, 561-569.
Akhras, G., Li, W.C. (2008), “Three-dimensional thermal buckling analysis of
piezoelectric composite plates using the finite layer method, Smart Mater.
Struct., 17, 1-8.
Brischetto, S., Carrera, E. (2010), “Advanced mixed theories for bending analysis of
functionally graded plates, Comput. Struct., 88, 1474-1483.
Carrera, E. (2000a), “A priori vs. a posteriori evaluation of transverse stresses in
multilayered orthotropic plates, Compos. Struct., 48, 245-260.
Carrera, E. (2000b), “An assessment of mixed and classical theories on global and
local response of multilayered orthotropic plates, Compos. Struct., 50,
183-198.
Carrera E. (2001), “Developments, ideas, and evaluations based upon Reissner’s
Mixed Variational Theorem in the modeling of multilayered plates and shells,
Appl. Mech. Rev., 54, 301-329.
Carrera, E. (2003a), “Historical review of zig-zag theories for multilayered plates
and shells, Appl. Mech. Rev., 56, 287-308.
30
Carrera, E. (2003b), “Theories and finite elements for multilayered plates and shells:
A unified compact formulation with numerical assessment and benchmarks,
Arch. Comput. Methods Eng., 10, 215-296.
Carrera, E., Brischetto, S. (2009), “A survey with numerical assessment of classical
and refined theories for the analysis of sandwich plates, Appl. Mech. Rev., 62,
1-17.
Carrera, E., Brischetto, S., Cinefra, M., Soave, M. (2010), “Refined and advanced
models for multilayered plates and shells embedding functionally graded
material layers, Mech. Adv. Mater. Struct., 17, 603-621.
Carrera, E., Brischetto, S., Robaldo A. (2008), “A variable kinematic model for the
analysis of functionally graded material plates, AIAA J., 46, 194-203.
Carrera, E., Ciuffreda, A. (2005a), “Bending of composites and sandwich plates
subjected to localized lateral loadings: A comparison of various theories,
Compos. Struct., 68, 185-202.
Carrera, E., Ciuffreda, A. (2005b), “A unified formulation to assess theories of
multilayered plates for various bending problems, Compos. Struct., 69,
271-293.
Cheung, Y.K., Jiang, C.P. (2001), “ Finite layer method in analysis of piezoelectric
composite laminates, Comput. Methods Appl. Mech. Eng., 191, 879-901.
31
Cheung, Y.K., Kong, J. (1993), “Approximate three-dimensional analysis of
rectangular thick laminated plates: Bending, vibration and buckling, Comput.
Struct., 47, 193-199.
D’Ottavio, M., Carrera, E. (2010), “Variable-kinematics approach for linearized
buckling analysis of laminated plates and shells, AIAA J., 48, 1987-1996.
Fan, J., Ye, J. (1993), “Exact solutions of buckling for simply supported thick
laminates, Compos. Struct., 24, 23-28.
Gu, H., Chattopadhyay, A. (2000), “Three-dimensional elasticity solution for
buckling of composite laminates, Compos. Struct., 50, 29-35.
Kim, S.E., Thai, H.T., Lee, J. (2009a), “Buckling analysis of plates using the two
variable refined plate theory, Thin-Walled Struct., 47, 455-462.
Kim, S.E., Thai, H.T., Lee, J. (2009b), “A two variable refined plate theory for
laminated composite plates, Compos. Struct., 89, 197-205.
Na, K.S., Kim, J.H. (2004), “Three-dimensional thermal buckling analysis of
functionally graded materials, Compos. Part B: Eng., 35, 429-437.
Na, K.S., Kim, J.H. (2006), “Three-dimensional thermomechanical buckling
analysis for functionally graded composite plates, Compos. Struct. 73,
413-422.
32
Nali, P., Carrera, E., Lecca, S. (2011), “Assessments of refined theories for buckling
analysis of laminated plates, Compos. Struct., 93, 456-464.
Noor, A.K. (1975), “Stability of multilayered composite plates, Fibre Sci. Technol.,
8, 81-89.
Noor, A.K., Burton, W.S. (1990), “Assessment of computational models for
multilayered anisotropic plates, Compos. Struct., 14, 233_265.
Noor, A.K., Burton, W.S., Bert, C.W. (1996), “Computational model for sandwich
panels and shells, Appl. Mech. Rev., 49, 155_199.
Reddy, J.N. (1993), “An evaluation of equivalent single layer and layerwise theories
of composite laminates, Compos. Struct., 25, 21_35.
Reddy, J.N., Khdeir, A.A. (1989), “Buckling and vibration of laminated composite
plates using various plate theories, AIAA J., 27,1808-1817.
Reddy, J.N., Phan, N.D. (1985), “Stability and vibration of isotropic, orthotropic and
laminated plates according to a higher-order shear deformation theory, J.
Sound Vib., 98, 157-170.
Reissner, E. (1984), “On a certain mixed variational theory and a proposed
application, Int. J. Numer Methods Eng., 20, 1366-1368.
Reissner, E. (1986a), “On a mixed variational theorem and on a shear deformable
plate theory, Int. J. Numer Methods Eng., 23, 193-198.
33
Reissner, E. (1986b), “On a certain mixed variational theorem and on laminated
elastic shell theory, Proc. Euromech-Colloquium, 219, 17-27.
Teo, T.M., Liew, K.M. (1999a), “Three-dimensional elasticity solutions to some
orthotropic plate problems, Int. J. Solids Struct., 36, 5301-5326.
Teo, T.M., Liew, K.M. (1999b), “A differential quadrature procedure for
three-dimensional buckling analysis of rectangular plates, Int. J. Solids Struct.,
36, 1149-1168.
Thai, H.T., Kim, S.E. (2011), “Levy-type solution for buckling analysis of
orthotropic plates based on two variable refined plate theory, Compos. Struct.,
93, 1738-1746.
Wu, C.P., Chang, R.Y. (2012), “A unified formulation of RMVT-based finite
cylindrical layer methods for sandwich circular hollow cylinders with an
embedded FGM layer, Compos. Part B: Eng., 43, 3318-3333.
Wu, C.P., Chen, C.W. (2001), “Elastic buckling of multilayered anisotropic conical
shells, J. Aerospace Eng. 14, 29-36.
Wu, C.P., Chen, W.Y. (1994), “Vibration and stability of laminated plates based on
a local high order plate theory, J. Sound Vib., 177, 503-520.
34
Wu, C.P., Chiu, K.H., Wang, Y.M. (2008), “A review on the three-dimensional
analytical approaches of multilayered and functionally graded piezoelectric
plates and shells, Comput. Mater. Continua, 18, 93-132.
Wu, C.P., Chiu, S.J. (2001), “Thermoelastic buckling of laminated composite
conical shells, J. Therm. Stresses, 24, 881-901.
Wu, C.P., Chiu, S.J. (2002), “Thermally induced dynamic instability of laminated
composite conical shells, Int. J. Solids Struct., 39, 3001-3021.
Wu, C.P., Li, H.Y. (2010), “The RMVT- and PVD-based finite layer methods for
the three-dimensional analysis of multilayered composite and FGM plates,
Compos. Struct., 92, 2476-2496.
Wu, Z., Chen, W. (2007), “Thermomechanical buckling of laminated composite and
sandwich plates using global-local higher order theory, Int. J. Mech. Sci., 49,
712-721.
Wu, Z., Chen, W. (2008), “An assessment of several displacement-based theories
for the vibration and stability analysis of laminated composite and sandwich
beams, Compos. Struct., 84, 337-349.
Wu, Z., Cheung, Y.K., Lo, S.H., Chen, W. (2008), “Effects of higher-order
global-local shear deformations on bending, vibration and buckling of
multilayered plates, Compos. Struct., 82, 277-289.
35
Zenkour, A.M. (2005), “A comprehensive analysis of functionally graded sandwich
plates: Part 2-Buckling and free vibration, Int. J. Solids Struct. 42, 5243-5258.
Zenkour, A.M., Ai-Sheikh, K. (2001), “Buckling and free vibration of elastic plates
using simple and mixed shear deformation theories, Acta Mech., 146,
183-197.
Zenkour, A.M., Fares, M.e. (2001), “Bending, buckling and free vibration of
non-homogeneous composite laminated cylindrical shells using a refined
first-order theory, Compos. Part B: Eng., 32, 237-247.
Zhao, X., Lee, Y.Y., Liew, K.M. (2009), “Mechanical and thermal buckling analysis
of functionally graded plates, Compos. Struct., 90, 161-171.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王精文、范凱棠(2006)。工作不滿足與持續承諾對員工創造力表現之影響。人力資源管理學報,6(4),81-98。
2. 施智婷、陳旭耀、黃良志(2011)。主管管理職能提升:自我導向學習與知覺組織支持的交互效果。臺大管理論叢,22(1),135-164。
3. 翁明祥(1996),「技術密集產業技術創新過程及關鍵影響因素關係之研究」,輔仁管理評論,3(2)。
4. 張火燦、劉嘉雯、許宏明、繆敏志、童志隆(2011)。主管心情感染與員工創新行為的關係:敬業貢獻與工作倦怠的中介角色。人力資源管理學報,11(2),1-24。
5. 梁麗珍(2008)。在職進修學生自我導向學習、學習動機與學習策略之結構方程模式。嶺東學報,23,149-179
6. 郭明琪(2003)。工作的熱情。數位時代網站。2012年7月10日,取自http://www.bnext.com.tw/article/view/cid/0/id/6353
7. 陳建佑(2011)。從關懷與交易觀點探討職場友誼與組織公民行為之關係。人文暨社會科學期刊,7(2),17-24。
8. 彭懷真(1998)。讓團隊熱情過活。管理雜誌,293,66-67。
9. 湯明哲(1999)。策略創新要能持續。遠見雜誌。158,20-22。
10. 湯明哲(2002)。創新教育關係競爭力。遠見雜誌。191,33-34。
11. 蔡啟通(2008)。內在動機與員工創新行為之關係:Amabile三元交互效果及Shin中介效果之驗證。管理學報,25(5),549-575。
12. 鄧運林(2000)。開放學習與自我導向學習。隔空教育論叢12, 25-46。
13. 賴士葆(1987)。企業技術特性與新產品發展績效相關之研究。管理評論,6,102-114。
14. 謝安田、楊新生(2011)。職場友誼對組織認同之影響:以工作滿意與群體凝聚力為中介變數。人文暨社會科學期刊,7(1),77-90。
15. 顏昌華、林英顏、黃文平、鄧秀玉(2011)。組織公平、工作安全感與職場友誼關係之研究─正職勞工與派遣勞工之探討。人力資源管理學報,11(2),47-70。