跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建男
研究生(外文):Lin, Chien-Nan
論文名稱:對苯二腈、雙磷烷、含氮異環碳烯橋接之EFe3Cu2 (E = S, Se, Te) 錯合物: 合成、轉換、半導性以及催化
論文名稱(外文):Dicyanobenzene-, Diphosphine-, and N-Heterocyclic Carbene-Bridged EFe3Cu2 (E = S, Se, Te) Complexes: Synthesis, Transformation, Semiconductivity, and Catalysis
指導教授:謝明惠謝明惠引用關係
指導教授(外文):Shieh, Minghuey
學位類別:博士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:203
中文關鍵詞:金屬團簇物羰基配子同耦合反應
外文關鍵詞:SSeTemetal clusterscarbonyl ligandshomocoupling reactions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1. S/Fe/Cu/Dppx 系統之研究
透過蒸氣揮發與機械式研磨的化學方法,具有雙磷配基dppe連結著SFe3Cu2的團簇物 [{(m3-S)Fe3(CO)9}Cu2(dppe)] 與其一維聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n 間存在著固態可逆轉換關係。其中聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n能隙為1.69 eV,具有半導體特性。
2. Se, Te/Fe/Cu/p-DCB 系統之研究
當固態反應物 [EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基1,4-dicyanobenzene (p-DCB) 分別以1:1 以及 1:1.5的比例混合並加入幾滴THF進行研磨,可合成兩種以EFe3(CO)9Cu2為基底THF引入且取代基p-DCB分別以單股和混合單股與雙股橋接的型式所形成之一維聚合物[SeFe3(CO)9Cu2(p-DCB)1.5•0.5THF]n (1a-THF) 與[TeFe3(CO)9Cu2(p-DCB)•THF]n (2b-THF)。X光繞射分析顯示聚合物1a-THF其上雙股p-DCB相鄰苯環間呈現平行位移排列並有著分子內pi···pi作用力且1a-THF或2b-THF其晶格溶劑THF上的氧原子可和鄰近p-DCB上的氫原子相互作用形成微弱之C─H…O氫鍵。當研磨的溶劑替換為CH2Cl2,只有得到以TeFe3(CO)9Cu2為基底,混合單股與雙股p-DCB橋接的聚合物 [TeFe3(CO)9Cu2(p-DCB)1.5]n (1b)。反之,一旦於60度加熱並抽真空,1a-THF上的晶格溶劑THF可被移除並生成聚合物 [SeFe3(CO)9Cu2(p-DCB)1.5]n (1a)。1a和1b為isomorphous且其晶體結構同呈緊密堆積。有趣地,當[EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基p-DCB以1:1.5比例混合並加入幾滴CH2Cl2/toluene (v/v = 1/1) 進行研磨,可合成出以EFe3(CO)9Cu2為基底甲苯引入且取代基p-DCB分別以混合單股與雙股橋接的型式所連接之一維聚合物[EFe3(CO)9Cu2(p-DCB)1.5•0.5toluene]n (E = Se, 1a-toluene; Te, 1b-toluene),其中甲苯的苯環與鄰近p-DCB上傾斜苯環的氫原子形成顯著的C─H···pi作用力。此外,藉由加入溶劑THF、CH2Cl2、 CH2Cl2/toluene 或是添加額外的 p-DCB 取代基進行溶劑輔助研磨,聚合物1a、1a-THF和 1a-toluene間抑或是 1b-toluene、2b-THF和 1b間可進行可逆地固態結構轉換,伴隨著晶格溶劑的吸附與脫附、晶體位移堆積以及晶體至晶體間的膨脹與收縮現象。此外,導電度的丈量呈現出聚合物1a(1b)、1a(1b)-toluene和 2b-THF具有半導體行為 (直流電導率, 10−3−10−2 Ω−1cm−1; 能隙, 1.42−1.50 eV),其導電度會受到pi···pi或是C─H···O作用力調控,此現象進一步使用DFT理論計算加以解釋。
3. Te/Fe/Cu/NHC 系統之研究
一新型TeFe3(CO)9併入雙銅含氮異環碳烯 (N-heterocyclic carbene) 錯合物可直接藉由一鍋化反應製備。透過引入具推電子與立障的團簇陰離子基團 [TeFe3(CO)9]2− 及含氮異環碳烯作為取代基,這些以雙銅為基底的錯合物對同耦合催化硼酸反應表現出顯著的催化活性,即少量銅承載量 (0.5 or 1.0 mol%) 以及高產率 (直達98%)。
1. S/Fe/Cu/Dppx System
A reversible vapochemical and mechanochemical solid-state transformation between a dppe-linked SFe3Cu2-based cluster [{(m3-S)Fe3(CO)9}Cu2(dppe)] and its 1D polymer [{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n, was demonstrated, in which polymer [{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n exhibited semi-conducting properties with an energy gap of 1.69 eV.
2. Se, Te/Fe/Cu/p-DCB System
When solid reactants [EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) and 1,4-dicyanobenzene (p-DCB) were mixed in 1:1 and 1:1.5 ratios and ground with drops of THF, two EFe3(CO)9Cu2-based THF-encapsulated single/double and single/single p-DCB-linked 1D polymers [SeFe3(CO)9Cu2(p-DCB)1.5•0.5THF]n (1a-THF) and [TeFe3(CO)9Cu2(p-DCB)•THF]n (2b-THF) were obtained, respectively. X-ray analysis showed that the neighboring benzenes of the double p-DCB linkers of 1a-THF displayed a parallel-displaced geometry with an intramolecular pi···pi interaction and the oxygen atom of the lattice THF of 1a-THF or 2b-THF interacted with its adjacent hydrogen atoms of the p-DCB ligands to give weak C─H…O hydrogen bonds. When the grinding solvent changed into CH2Cl2, only TeFe3(CO)9Cu2-based single/double p-DCB-linked polymer [TeFe3(CO)9Cu2(p-DCB)1.5]n (1b) was obtained. Instead, upon heating at 60 oC under vacuum, the lattice THF of 1a-THF could be removed to give [SeFe3(CO)9Cu2(p-DCB)1.5]n (1a). 1a and 1b were isomorphous and exhibited tight crystal-packed structures. Interestingly, when [EFe3(CO)9Cu2(MeCN)2] and p-DCB were mixed in a 1:1.5 ratio and ground with CH2Cl2/toluene (v/v = 1/1), the EFe3(CO)9Cu2-based toluene-encapsulated single/double p-DCB-linked polymers [EFe3(CO)9Cu2(p-DCB)1.5•0.5toluene]n (E = Se, 1a-toluene; Te, 1b-toluene) were obtained, in which the benzene ring of the guest toluene and its adjacent hydrogen atom of the titled benzene of the p-DCB ligand showed significant C─H···pi interaction. In addition, mechanochemically reversible solid-state structural transformations among 1a, 1a-THF, and 1a-toluene, as well as 1b-toluene, 2b-THF, and 1b were achieved by grinding with THF, CH2Cl2, CH2Cl2/toluene, or additional p-DCB ligands, accompanied with the uptake and removal of the lattice solvent, the slippage of the packing layers, and crystal to crystal expansion and contraction. In addition, the measurement of conductivity showed that polymers 1a(1b), 1a(1b)-toluene, and 2b-THF exhibited semiconducting behaviors (dc conductivity, 10−3−10−2 Ω−1cm−1; energy gap, 1.42−1.50 eV) which could be tuned by weak pi···pi interaction and C─H···O hydrogen bonding, elucidated by DFT calculations.
3. Te/Fe/Cu/NHC System
A new type of TeFe3(CO)9-incorporated dicopper N-heterocyclic carbene (NHC) complexes was obtained directly from one-pot reactions. By the introduction of the electron-donating and bulky cluster anion [TeFe3(CO)9]2− and NHCs as the ligands, these di-Cu(I)-based complexes exhibited pronounced catalyst activities toward the homocoupling of arylboronic acids with low Cu loadings (0.5 or 1.0 mol%) and high yields (up to 98%).
Abstract (Chinese) І
Abstract (English) III
Chapter 1 Vapochemically and Mechanochemically Reversible Polymerization/Depolymerization of S─Fe─Cu Carbonyl Clusters 1

Chapter 2 Mechanochemical Synthesis and Reversible Structural Transformations of EFe3Cu2 (E = Se, Te)-based 1D Carbonyl Polymers: Breathing Effects and Semiconducting Behaviors Tuned by Weak pi···pi and C─H···O Bonding 30
Abstract 30
2.1 Introduction 31
2.2 Results and Discussion 33
2.3 Conclusion 48
2.4 Experimental Section 50

Chapter 3 Design and Synthesis of Tellurium-Iron Carbonyls-Incorporated Dicopper(I) N-Heterocyclic Carbene (NHC) Complexes and Their Catalytic Suzuki Homocoupling Reactions 156
Appendix A Publications 203

Chapter 1
1 (a) T. Lasanta, M. E. Olmos, A. Laguna, J. M. López-de-Luzuriaga and P. Naumov, J. Am. Chem. Soc., 2011, 133, 16358; (b) I. O. Koshevoy, Y.-C. Chang, A. J. Karttunen, M. Haukka, T. Pakkanen and P.-T. Chou, J. Am. Chem. Soc., 2012, 134, 6564; (c) G. M. Espallargas, M. Hippler, A. J. Florence, P. Fernandes, J. van de Streek, M. Brunelli, W. I. F. David, K. Shankland and L. Brammer, J. Am. Chem. Soc., 2007, 129, 15606; (d) S. Libri, M. Mahler, G. M. Espallargas, D. C. N. G. Singh, J. Soleimannejad, H. Adams, M. D. Burgard, N. P. Rath, M. Brunelli and L. Brammer, Angew. Chem. Int. Ed., 2008, 47, 1693; (e) L.-Q. Mo, J.-H. Jia, L.-J. Sun and Q.-M. Wang, Chem. Commun., 2013, 48, 8691; (f) Z. Huang, P. S. White and M. Brookhart, Nature, 2010, 465, 598; (g) S. B. L. Vollrath, C. Hu, S. Bräse and K. Kirshenbaum, Chem. Commun., 2013, 49, 2317.
2 (a) D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi and M. Polito, Dalton Trans., 2006, 1249; (b) T. Friščić and W. Jones, Cryst. Growth Des., 2009, 9, 1621; (c) T. Friščić, Chem. Soc. Rev., 2012, 41, 3493; (d) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413; (e) T. Friščić, J. Mater. Chem., 2010, 20, 7599; (f) G. A. Bowmaker, Chem. Commun., 2013, 49, 334. (g) E. Boldyreva, Chem. Soc. Rev., 2013, 42, 7719. (h) G.-W. Wang, Chem. Soc. Rev., 2013, 42, 7668.
3 (a) G. K. Kole and J. J. Vittal, Chem. Soc. Rev., 2013, 42, 1755; (b) T. Friščić, I. Halasz, V. Štrukil, M. Eckert-Maksić and R. E. Dinnebier, Croat. Chem. Acta, 2012, 85, 367; (c) J. J. Vittal, Coord. Chem. Rev., 2007, 251, 1781.
4 (a) M. Shieh, C.-Y. Miu, Y.-Y. Chu and C.-N. Lin, Coord. Chem. Rev., 2012, 256, 637; (b) S. Zacchini, Eur. J. Inorg. Chem., 2011, 4125.
5 (a) T. Nakajima, A. Ishiguro and Y. Wakatsuki, Angew. Chem. Int. Ed., 2001, 40, 1066; (b) J. Bai, E. Leiner and M. Scheer, Angew. Chem. Int. Ed., 2002, 41, 783; (c) M. Scheer, L. Gregoriades, J. Bai, M. Sierka, G. Brunklaus and H. Eckert, Chem. Eur. J., 2005, 11, 2163; (d) C. Femoni, F. Kaswalder, M. C. Iapalucci, G. Longoni and S. Zacchini, Chem. Commun., 2006, 2135; (e) C. Femoni, R. D. Pergola, M. C. Iapalucci, F. Kaswalder, M. Riccò and S. Zacchini, Dalton Trans., 2009, 1509; (f) R. D. Pergola, A. Sironi, C. Manassero and M. Manassero, Eur. J. Inorg. Chem., 2009, 4618; (g) P. Leoni, L. Marchetti, V. Bonuccelli, S. K. Mohapatra, A. Albinati, S. Rizzato, Chem. Eur. J., 2010, 16, 9468; (h) M. Shieh, M.-H. Hsu, W.-S. Sheu, L.-F. Jang, S.-F. Lin, Y.-Y. Chu, C.-Y. Miu, Y.-W. Lai, H.-L. Liu and J. L. Her, Chem. Eur. J., 2007, 13, 6605; (i) M. Shieh, C.-H. Ho, W.-S. Sheu, B.-G. Chen, Y.-Y. Chu, C.-Y. Miu, H.-L. Liu and C.-C. Shen, J. Am. Chem. Soc., 2008, 130, 14114.
6 J.-J. Cherng, Y.-C. Tsai, C.-H. Ueng, G.-H. Lee, S.-M. Peng and M. Shieh, Organometallics, 1998, 17, 255.
7 (a) G. J. Kubas, Inorg. Synth. 1979, 19, 90; (b) M. G. Simmons, C. L. Merrill, L. J. Wilson, L. A. Bottomley and K. M. Kadish, J. Chem. Soc., Dalton Trans., 1980, 1827.
8 (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066; (b) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735.
9 K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
10 (a) N. Shan, F. Toda and W. Jones, Chem. Commun., 2002, 2372; (b) G. A. Bowmaker, N. Chaichit, C. Pakawatchai, B. W. Skelton and A. H. White, Dalton Trans., 2008, 2926; (c) A. V. Trask, W. D. S. Motherwell and W. Jones, Chem. Commun., 2004, 890; (d) A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan and K. J. Carpenter, Chem. Commun., 2005, 880; (e) T. Friščić, A. V. Trask, W. Jones and W. D. S. Motherwell, Angew. Chem. Int. Ed., 2006, 45, 7546; (f) D. Braga, M. Curzi, A. Johansson, M. Polito, K. Rubini and F. Grepioni, Angew. Chem. Int. Ed., 2006, 45, 142; (g) D. Braga, S. L. Giaffreda and F. Grepioni, Chem. Commun., 2006, 3877; (h) T. Friščić, L. Fábián, J. C. Burley, W. Jones and W. D. S. Motherwell, Chem. Commun., 2006, 5009.
11 J. Y. Lee, H. J. Kim, J. H. Jung, W. Sim and S. S. Lee, J. Am. Chem. Soc., 2008, 130, 13838.

Chapter 2
(1) (a) Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334─2375. (b) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705─714.
(2) (a) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109─119. (b) Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273─282.
(3) (a) Serre, C.; Millange, F.; Thouvenot, C.; Nogués, M.; Marsolier, G.; Louër, D. Férey, G. J. Am. Chem. Soc. 2002, 124, 13519─13526. (b) Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. Am. Chem. Soc. 2004, 126, 3817─3828. (c) Maji, T. K.; Uemura, K.; Chang, H. C.; Matsuda, R.; Kitagawa, S. Angew. Chem., Int. Ed. 2004, 43, 3269─3272. (d) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata, M. J. Am. Chem. Soc. 2004, 126, 14063─14070. (e) Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 5033─5035. (f) Halder, J. G.; Kepert, C. J.; Moubaraki, K.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762─1765. (g) Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am. Chem. Soc. 2002, 124, 9574─9581. (h) Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 3395─3398. (i) Min, K. S.; Suh, M. P. Chem. ─Eur. J. 2001, 7, 303─313. (j) Lee, E. Y.; Jang, S. Y.; Suh, M. P. J. Am. Chem. Soc. 2005, 127, 6374─6381.
(4) (a) Samaranayake, M.; Bujnicki, J. M.; Carpenter, M.; Bhagwat, A. S. Chem. Rev. 2006, 106, 700─719. (b) Keeble, A. H.; Kirkpatrick, N.; Shimizu, S.; Kleanthous, C. Biochemistry 2006, 45, 3243─3254. (c) Wang, T.; Gu, S.; Ronni, T.; Du, Y. C.; Chen, X. J. Proteome Res. 2005, 4, 941─949. (d) Dziadek, S.; Hobel, A.; Schmitt, E.; Kunz, H. Angew. Chem., Int. Ed. 2005, 44, 7630─7635.
(5) (a) Graziewicz, M. A.; Longley, M. J.; Copeland, W. C. Chem. Rev. 2006, 106, 383─405. (b) Riguet, E.; Tripathi, S.; Chaubey, B.; Desire, J.; Pandey, V. N.; Decout, J. L. J. Med. Chem. 2004, 47, 4806─4809. (c) Ren, J.; Qu, X.; Dattagupta, N.; Chaires, J. B. J. Am. Chem. Soc. 2001, 123, 6742─6743.
(6) (a) Moro, S.; Gao, Z. G.; Jacobson, K. A.; Spalluto, G. Med. Res. Rev. 2006, 26, 131─159. (b) Zadmard, R.; Schrader, T. J. Am. Chem. Soc. 2005, 127, 904─915. (c) Shrout, A. L.; Montefusco, D. J.; Weis, R. M. Biochemistry 2003, 42, 13379─13385.
(7) (a) Sun, H.; Tottempudi, U. K.; Mottishaw, J. D.; Basa, P. N.; Putta, A.; Sykes, A. G. Cryst. Growth Des. 2012, 12, 5655─5662. (b) Fuma, Y.; Ebihara, M.; Kutsumizu, S.; Kawamura, T. J. Am. Chem. Soc. 2004, 126, 12238─12239. (c) Fuma, Y.; Miyashita, O.; Kawamura, T.; Ebihara, M. Dalton Trans. 2012, 41, 8242─8251. (d) Takazaki, Y.; Yang, Z.; Ebihara, M.; Inoue, K.; Kawamura, T. Chem. Lett. 2003, 120─121.
(8) Guillon, D. Struct. Bonding (Berlin) 1999, 95, 41─82.
(9) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491─1546.
(10) Grimsdale, A. C.; Mullen, K. Angew. Chem., Int. Ed. 2005, 44, 5592─5629.
(11) Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642─1662.
(12) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637─694; (b) Zacchini, S. Eur. J. Inorg. Chem. 2011, 4125─4145.
(13) (a) Nakajima, T.; Ishiguro, A.; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 1066─1068. (b) Bai, J.; Leiner, E.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 783─786. (c) Scheer, M.; Gregoriades, L.; Bai, J.; Sierka, M.; Brunklaus, G.; Eckert, H. Chem. ─Eur. J. 2005, 11, 2163─2169. (d) Femoni, C.; Kaswalder, F.; Iapalucci, M. C.; Longoni, G.; Zacchini, S. Chem. Commun. 2006, 2135─2137. (e) Femoni, C.; Pergola, R. D.; Iapalucci, M. C.; Kaswalder, F.; Riccò, M.; Zacchini, S. Dalton Trans. 2009, 1509─1511. (f) Pergola, R. D.; Sironi, A.; Manassero, C.; Manassero, M. Eur. J. Inorg. Chem. 2009, 4618─4621; (g) Leoni, P.; Marchetti, L.; Bonuccelli, V.; Mohapatra, S. K.; Albinati, A.; Rizzato, S. Chem. ─Eur. J. 2010, 16, 9468─9477. (h) Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W.; Liu, H.-L.; Her, J. L. Chem. ─Eur. J. 2007, 13, 6605─6616; (i) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, B.-G.; Chu, Y.-Y.; Miu, C.-Y.; Liu, H.-L.; Shen, C.-C. J. Am. Chem. Soc. 2008, 130, 14114─14116.
(14) Lin, C.-N.; Jhu, W.-T.; Shieh, M. Chem. Commun. 2014, 1134─1136.
(15) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885─3896.
(16) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441─449.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö .; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
(18) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7─13.
(19) Tayubi, I. A.; Sethumadhavan, R. Int. J. Pharm. Pharm. Sci. 2011, 3, 212─218.
(20) Femoni, C.; Della Pergola, R.; Iapalucci, M. C.; Kaswalder, F.; Riccò, M.; Zacchini, S. Dalton Trans. 2009, 1509─1511.
(21) (a) Ferey, G.; Serre, C. Chem. Soc. Rev. 2009, 38, 1380─1399. (b) Thallapally, P. K.; McGrail, B. P.; Dalgarno, S. J.; Schaef, H. T.; Tian, J.; Atwood, J. L. Nat. Mater. 2008, 7, 146─150. (c) Thallapally, P. K.; Tian, J.; Kishan, M. R.; Fernandez, C. A.; Dalgarno, S. J.; McGrail, P. B.; Warren, J. E.; Atwood, J. L. J. Am. Chem. Soc. 2008, 130, 16842─16843. (d) Thallapally, P. K.; McGrail, P. B.; Dalgarno, S. J.; Atwood, J. L. Cryst. Growth Des. 2008, 8, 2090─2092.
(22) (a) Wooten, F. Optical Properties of Solid; Academic Press: New York, 1972. (b) Liu, H. L.; Tanner, D. B.; Pullen, A. E.; Abboud, K. A.; Reynolds, J. R. Phys. Rev. B 1996, 53, 10557. (c) Liu, H. L.; Chou, L.-K.; Abboud, K. A.; Ward, B. H.; Fanucci, G. E.; Granroth, G. E.; Canadell, E.; Meisel, M. W.; Talham, D. R.; Tanner, D. B. Chem. Mater. 1997, 9, 1865.
(23) (a) Cerrada, E.; Diaz, M. C.; Diaz, C.; Lagura, M.; Sabater, A. Synth. Met. 2001, 119, 91─92. (b) Uemura, K.; Fukui, K.; Nishikawa, H.; Arai, S.; Matsumoto, K.; Oshio, H. Angew. Chem. Int. Ed. Engl. 2005, 44, 5459─5464. (c) Kobel, W.; Hanack, M. Inorg. Chem. 1986, 25, 103─107. (d) Knecht, S.; Polley, R.; Hanack, M. Appl. Organomet. Chem. 1996, 10, 649─660. (e) Hanack, M.; Keppeler, U.; Schulze, H. J. Synth. Met. 1987, 20, 347─356. (f) Delgado, S.; Sanz Miguel, P. J.; Priego, J. L.; Jimenez-Aparicio, R.; Gomez-García, C. J.; Zamora, F. Inorg. Chem. 2008, 47, 9128─9130. (g) Chen, Y.; Wang, Z.-O.; Ren, H.-X.; Li, D.-X.; Liu, D.; Zhang, Y.; Lang, J.-P. Cryst. Growth Des. 2009, 9, 4963─4968.
(24) Delley, B. J. Chem. Phys. 1990, 92, 508─517.
(25) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
(26) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303─2305.
(27) Shieh, M.; Chen, P.-F.; Tsai, Y.-C.; Shieh, M.-H.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2251─2254.
(28) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827─1837.
(29) Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
(30) (a) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112─122.
(31) Truhlar, D. G.; Zhao, Y. Theor. Chem. Acc. 2006, 120, 215─241.
(32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett 1996, 77, 3865─3868.
(33) Grimme, S. T. Comput. Chem. 2004, 25, 1463─1473.
(34) (a) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762─1774. (b) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123─141. (c) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431─1441.
(35) Kubelka, P.; Munk, F. Z. Tech. Phys., 1931, 12, 593─601.
(36) Tauc, J. Mater. Res. Bull., 1970, 5, 721─730.

Chapter 3
[1] a) P. Braunstein, J. Rosé in Metal Clusters in Chemistry, Vol. 2 (Eds.:
P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH, Weinheim, 1999,
Chapter 2.2, pp 616 ─677 ; b) "Heteronuclear Metal-Metal Bonds" R. D.
Adams in Comprehensive Organometallic Chemistry II, Vol. 10 (Eds.: E.
W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995; c)
The Chemistry of Metal Cluster Complexes (Eds.: D. F. Shriver, H. D.
Kaesz, R. D. Adams), Wiley-VCH, New York, 1990.
[2] a) "Bimetallic magnets: Present and perspectives" C. Mathonière, J.-P.
Sutter, J. V. Yakhmi in Magnetism: molecules to materials, Vol. 4 (Eds.:
J. S. Miller, M. Drillon), Wiley-VCH, Weinheim, 2002; b) C. Femoni, M.
C. Iapalucci, F. Kaswalder, G. Longoni, S. Zacchini, Coord. Chem. Rev.
2006, 250, 1580─1604; c) S. Zacchini, Eur. J. Inorg. Chem. 2011,
4125─4145; d) M. Shieh, C.-Y. Miu, Y.-Y. Chu, C.-N. Lin, Coord. Chem.
Rev. 2012, 256, 637─694, and references therein.
[3] a) Metal Clusters in Catalysis, Studies in Surface Science and Catalysis
Series, Vol. 29 (Eds.: B. C. Gates, L. Guczi, H. Knözinger), Elsevier,
Amsterdam, 1986; b) S. Hermans, T. Khimyak, R. Raja, G. Sankar, J.
M. Thomas, B. F. G. Johnson, in Nanotechnology in Catalysis (Eds.: B.
Zhou, S. Hermans, G. A. Somorjai), Kluwer Academic, Plenum
Publishers, New York, 2004; c) R. D. Adams, B. Captain, Acc. Chem.
Res. 2009, 42, 409─418; d) J. M. Thomas, B. F. G. Johnson, R. Raja,
G. Sankar, P. A. Midgley, Acc. Chem. Res. 2003, 36, 20─30; e) L. N.
Lewis, Chem. Rev. 1993, 93, 2693─2730; f) A. Sivaramakrishna, H. S.
Clayton, B. C. E. Makhubela, J. R. Moss, Coord. Chem. Rev. 2008, 252,
1460─1485.
[4] a) N-Heterocyclic Carbenes in Transition Metal Catalysis (Ed.: F.
Glorius), Springer, Berlin, 2007; b) N-Heterocyclic Carbenes in
Synthesis (Ed.: S. P. Nolan), Wiley-VCH, Weinheim, 2006; c) NHeterocyclic Carbenes in Transition Metal Catalysis and
Organocatalysis (Ed.: C. S. J. Cazin), Springer, Heidelberg, 2011; d) F.
Lazreg, F. Nahra, C. S. J. Cazin, Coord. Chem. Rev. 2015, 293-294,
48─79. e) J. D. Egbert, C. S. J. Cazin, S. P. Nolan, Catal. Sci. Technol.
2013, 3, 912─926; f) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A.
Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109,
3561─3598; g) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev.
2009, 109, 3612─3676, and reference therein; h) F. Glorius, Top.
Organomet. Chem. 2007, 21, 1─20.
[5] a) G. G. Melikyan, Acc. Chem. Res. 2015, 48, 1065─1079.
[6] a) J. A. Cabeza, P. García-Álvarez, Chem. Soc. Rev. 2011, 40,
5389─5405, and references therein; b) J. Campos, L. S.
Sharninghausen, R. H. Crabtree, D. Balcells, Angew. Chem. Int. Ed.
2014, 53, 12808─12811; c) C.-H. Cheng, R.-Y. Guo, Q. Chi, H.-B. Song,
L.-F. Tang, Transit. Met. Chem. 2015, 40, 297─304; d) S. Saha, B.
Captain, Inorg. Chem. 2014, 53, 1210─1216; e) R. Della Pergola, A.
Sironi, A. Rosehr, V. Colombo, A. Sironi, Inorg. Chem. Commun. 2014,
49, 27─29; f) Y. Liu, R. Ganguly, H. V. Huynh, W. K. Leong,
Organometallics 2013, 32, 7559─7563; g) R. D. Adams, J. Tedder, Y.
O. Wong, J. Organomet. Chem., DOI 10.1016/
j.jorganchem.2015.03.024; h) S. Banerjee, M. K. Karunananda, S.
Bagherzadeh, U. Jayarathne, S. R. Parmelee, G. W. Waldhart, N. P.
Mankad, Inorg. Chem. 2014, 53, 11307─11315.
[7] a) P. Puthiaraj, P. Suresh, K. Pitchumani, Green Chem. 2014, 16,
2865─2875, and references therein; b) B. Kaboudin, Y. Abedi, T.
Yokomatsu, Eur. J. Org. Chem. 2011, 6656─6662, and references
therein; c) C. F. Nising, U. K. Schmid, M. Nieger, S. Bräse, J. Org.
Chem. 2004, 69, 6830─6833; d) B. Rao, W. Zhang, L. Hu, M. Luo,
Green Chem. 2012, 14, 3436─3440.
[8] R. N. Dhital, H. Sakurai, Asian J. Org. Chem. 2014, 3, 668─684, and
references therein.
[9] a) A. R. Kapdi, G. Dhangar, J. L. Serrano, J. A. De Haro, P. Lozano, I.
J. S. Fairlamb, RSC Adv. 2014, 4, 55305─55312, and references
therein; b) M. Guo, L. Qi, M. Lv, X. Zhou, H. Liang, S. Chen, Lett. Org.
Chem. 2015, 12, 205─209.
[10] T. Vogler, A. Studer, Adv. Synth. Catal. 2008, 350, 1963─1967, and
references therein.
[11] a) K. Sharma, V. Bhalla, M. Kumar, RSC Adv. 2014, 4, 53795─53800,
and reference therein; b) A. Monopoli, A. Afzal, C. di Franco, N.
Ditaranto, N. Cioffi, A. Nacci, P. Cotugno, L. Torsi, J. Mol. Catal. A 2014,
386, 101─107, and reference therein; c) K. M. Parida, S. Singha, P. C.
Sahoo, S. Sahu, J. Mol. Catal. A 2011, 342─343, 11─17.
[12] a) A. S. Demir, Ö. Reis, M. Emrullahoglu, J. Org. Chem. 2003, 68,
10130─10134; b) G. Cheng, M. Luo, Eur. J. Org. Chem. 2011,
2519─2523; c) B. Kaboudin, T. Haruki, T. Yokomatsu, Synthesis 2011,
91─96; d) N. Kirai, Y. Yamamoto, Eur. J. Org. Chem. 2009, 1864─1867;
e) S. A. R. Mulla, S. S. Chavan, M. Y. Pathan, S. M. Inamdar, T. M. Y.
Shaikh, RSC Adv. 2015, 5, 24675─24680; f) B. A. Dar, S. Singh, N.
Pandey, A. P. Singh, P. Sharma, A. Lazar, M. Sharma, R. A.
Vishwakarma, B. Singh, Applied Catalysis A-General, 2014, 470,
232─238.
[13] a) N. A. Pushkarevsky, S. N. Konchenko, M. Scheer, J. Cluster Sci.
2007, 18, 606─617; b) M. Shieh, C.-H. Ho, C. R. Chimie 2005, 8,
1838─1849; c) P. Mathur, Adv. Organomet. Chem. 1997, 41, 243─315;
d) M. Shieh, Y.-W. Lai, J. Chin. Chem. Soc. 2002, 49, 851─859; e) M.
Shieh, J. Cluster Sci. 1999, 10, 3─36; f) M. Shieh, C.-Y. Miu, C.-J. Lee,
W.-C. Chen, Y.-Y. Chu, H.-L. Chen, Inorg. Chem. 2008, 47,
11018─11031; g) B.-G. Chen, C.-H. Ho, C.-J. Lee, M. Shieh, Inorg.
Chem. 2009, 48, 10757─10768.
[14] M. Shieh, P.-F. Chen, Y.-C. Tsai, M.-H. Shieh, S.-M. Peng, G.-H. Lee,
Inorg. Chem. 1995, 34, 2251─2254, and references therein.
[15] M. Shieh, C.-H. Ho, W.-S. Sheu, B.-G. Chen, Y.-Y. Chu, C.-Y. Miu, H.-L.
Liu, C.-C. Shen, J. Am. Chem. Soc. 2008, 130, 14114─14116.
[16] B. Liu, C. Chen, Y. Zhang, X. Liu, W. Chen, Organometallics 2013, 32,
5451─5460, and references therein.
[17] Cambridge Structural Database (CSD) from Cambridge
Crystallographic Data Centre (http://www.ccdc.cam.ac.uk): F. H. Allen,
Acta Crystallogr, Sect. B: Struct. Sci. 2002, 58, 380─388; CSD version
5.36, update Nov. 2014.
[18] C. Tubaro, A. Biffis, R. Gava, E. Scattolin, A. Volpe, M. Basato, M. M.
Díaz-Requejo, P. J. Perez, Eur. J. Org. Chem. 2012, 1367─1372.
[19] a) Physical Organic Chemistry (Ed.: L. P. Hammett), McGraw-Hill, New
York, 1970; b) H. H. Jaffé, Chem. Rev. 1953, 53, 191─261.
[20] a) K. Sun, S. Liu, P. M. Bec, T. G. Driver, Angew. Chem. Int. Ed. 2011,
50, 1702─1706; b) T. M. Gregg, R. F. Algera, J. R. Frost, F. Hassan, R.
J. Stewart, Tetrahedron Lett. 2010, 51, 6429─6432; c) M. M. DíazRequejo, P. J. Pérez, M. Brookhart, J. L. Templeton, Organometallics
1997, 16, 4399─4402.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 農民團體品牌水果經營效率之研究-資料包絡分析法之應用
2. 以毛細管電泳/雷射激發螢光間接偵測法─分析硒及銻類化合物
3. 利用多元素石墨爐原子吸收光譜儀直接且同時測定尿液中的鉍,鉛,鎘,硒,銻元素
4. 感應偶合電漿質譜儀於飛灰樣品中鎵、鍺、砷、硒及銻及汽油樣品中硫及鉛分析之應用
5. 液相層析結合感應偶合電漿質譜儀於銻、鉈、砷與硒分析之應用
6. 以資料包絡法研究全民健保總額實施前後之醫院效率─以台灣榮民醫院為例
7. 動力反應室結合感應耦合電漿質譜儀在環境及生物樣品中鍺、砷、硒及銻分析之應用
8. 含主族元素 (鉍、硫、硒、碲) 之過渡金屬 (鐵、釕、鉻、錳) 團簇化合物的合成、化性、物性與理論計算探討
9. Bi-Se-Sb三元系統在300 ℃ 相平衡圖下 之各相關研究
10. 含十六族 (硫、硒、碲) 與過渡金屬 (錳、鐵、銅、汞) 團簇化合物之反應性、電化學、電子吸收光譜及理論計算
11. 十六族元素 (硒或碲) 混合六族元素 (鉻、鉬、鎢) 或銅 (I) 配位含氮異環碳烯 (NHC) 配位基之團簇化合物的合成、物性及化性探討
12. Properties of alkaline earth metal intercalated in FeySe1-xTex system by ammonothermal method
13. 一、雷射剝蝕結合感應耦合電漿質譜儀分析鋼鐵中輕元素之應用;二、毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用
14. 含硒與碲之釕金屬團簇化合物的合成與其反應探討及其他相關之研究
15. 第十六族元素(S、Se、Te)混合錳與鐵及鉛鐵之金屬團簇化合物的合成及其相關性研究
 
無相關期刊