|
1.Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897. 2.Persson, C., Electronic and optical properties of Cu[sub 2]ZnSnS[sub 4] and Cu[sub 2]ZnSnSe[sub 4]. Journal of Applied Physics, 2010. 107(5): p. 053710. 3.Strümpel, C., et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar Energy Materials and Solar Cells, 2007. 91(4): p. 238-249. 4.Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558. 5.Peter Bermel, et al., Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Optical Society of America, 2007. 6.Kaelin, M., D. Rudmann, and A.N. Tiwari, Low cost processing of CIGS thin film solar cells. Solar Energy, 2004. 77(6): p. 749-756. 7.Zhou, H., et al., Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. J Am Chem Soc, 2013. 135(43): p. 15998-6001. 8.Tiong, V.T., J. Bell, and H. Wang, One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach. Beilstein J Nanotechnol, 2014. 5: p. 438-46. 9.Tiwari, A.N., et al., CdTe solar cell in a novel configuration. Progress in Photovoltaics: Research and Applications, 2004. 12(1): p. 33-38. 10.Wang, Z.-S., et al., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1381-1389. 11.Im, J.H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-93. 12.Kyaw, A.K.K., et al., An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO[sub 3] hole selective layer. Applied Physics Letters, 2008. 93(22): p. 221107. 13.Ashrafi, A.B.M.A., et al., Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters, 2000. 76(5): p. 550. 14.Ashrafi, A.A., et al., Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2000. 221(1-4): p. 435-439. 15.Barkhouse, D.A.R., et al., Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Applied Physics Letters, 2012. 100(19): p. 193904. 16.Rumberg, A., et al., ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells. Thin Solid Films, 2000. 361-362: p. 172-176. 17.Romeo, A., et al., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(23): p. 93-111. 18.Rostan, P.J., et al., Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures. Thin Solid Films, 2005. 480-481: p. 67-70. 19.林明獻, 太陽電池技術入門. 全華圖書, 2008. 20.Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications, 2015. 23(1): p. 1-9. 21.Suryawanshi, M.P., et al., CZTS based thin film solar cells: a status review. Materials Technology, 2013. 28(1/2): p. 98-109. 22.Jiang, M. and X. Y, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects. 2013. 23.Hironori Katagiri, et al., Preparation films by and evaluation of Cu2ZnSnS4 thin sulfurization of E-B evaporated precursors. Solar Energy Materials and Solar Cells, 1997: p. 407 - 414. 24.Liu, Y., et al., Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process. Energy Procedia, 2012. 16: p. 217-222. 25.Yeh, M.Y., C.C. Lee, and D.S. Wuu, Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009. 52(1): p. 65-68. 26.Liu, Y., et al., Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization. Journal of Materials Science: Materials in Electronics, 2012. 24(2): p. 529-535. 27.Shinde, N.M., R.J. Deokate, and C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. Journal of Analytical and Applied Pyrolysis, 2013. 100: p. 12-16. 28.Patel, M., I. Mukhopadhyay, and A. Ray, Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. Journal of Physics D: Applied Physics, 2012. 45(44): p. 445103. 29.Espindola-Rodriguez, M., et al., Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis. Thin Solid Films, 2013. 535: p. 67-72. 30.Zhou, Z., et al., Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2042-2045. 31.Nomura, T., T. Maeda, and T. Wada, Fabrication of Cu2SnS3solar cells by screen-printing and high-pressure sintering process. Japanese Journal of Applied Physics, 2014. 53(5S1): p. 05FW01. 32.Zhang, X., et al., Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. Applied Physics A, 2008. 94(2): p. 381-386. 33.Pawar, B.S., et al., Effect of Annealing Atmosphere on the Properties of Electrochemically Deposited Cu2ZnSnS4(CZTS) Thin Films. ISRN Renewable Energy, 2011. 2011: p. 1-5. 34.Pawar, S.M., et al., Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010. 55(12): p. 4057-4061. 35.Katagiri, H., et al., Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 2008. 1: p. 041201. 36.Emrani, A., P. Vasekar, and C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Solar Energy, 2013. 98: p. 335-340. 37.Dhakal, T.P., et al., Characterization of a CZTS thin film solar cell grown by sputtering method. Solar Energy, 2014. 100: p. 23-30. 38.Pawar, S.M., et al., Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films. Current Applied Physics, 2010. 10(2): p. 565-569. 39.Vanalakar, S.A., et al., A review on pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds, 2015. 619: p. 109-121. 40.Moholkar, A.V., et al., Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate. Solar Energy, 2011. 85(7): p. 1354-1363. 41.Grossberg, M., et al., Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications. Thin Solid Films, 2011. 519(21): p. 7403-7406. 42.Ganchev, M., et al., Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy. Thin Solid Films, 2011. 519(21): p. 7394-7398. 43.Meng, M., et al., Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors. Applied Surface Science, 2013. 273: p. 613-616. 44.Su, S.-H., et al., Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014. 2. 45.Pathan, H.M., et al., Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films. Applied Surface Science, 2003. 211(1-4): p. 48-56. 46.Chen, W., et al., Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm, 2014. 16(6): p. 1201.
|