|
參考文獻 林順富(2001) 生物化學。偉明圖書有限公司,Harcourt Asia Pte Ltd. 合作出版,104-173。 蔡芷芸(2006) Streptomyces thermonitrificans NTU-88聚木醣醣酶之純化與生化特性探討,40-79。 Alberto, R. A., P. Sanchez, J. Calvete, M. Raida, J. M. F. Abalos, and R. Santamaria (1997) Analysis of xysA, a gene from Streptomyces halstedii JM8 That Encodes a 45-kilodalton modular xylanase, Xys1. American Society for Microbiology. 63:2983-2988. Andrews, S. R., E. J. Taylor, G. Pell, F. Vincent, V. M. A. Ducros, G. J. Davies, J. H. Lakey, and H. J. Gilbert (2004) The use of forced protein evolution to investigate and improve stability of family 10 xylanases. The Journal of Bioidgical Chemistry. 279:54369-54379. Bajpai, P. (1999) Application of enzymes in the pulp and paper industry. Biotechnol prog. 15:147-157. Bastawde, K. B. (1992) Xylan structure, microbial xylanases, and their- mode of action. World J Microbiol Biotechnol. 8:353–368. Bedford, M.R., and H. L. Classen (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chick. pp 361-370. In: Visser J, Beldman G, vanSomeren MAK, Voragen AGJ (eds) Xylans and xylanases, Elsevier, Amsterdam. Beg, Q. K., B. Bhushan, M. Kapoor, and G. S. Hoondal (2001) Microbial xylanases and their industrial applications: a review. Appl Microbial Biotechnol. 56:326-338.
Biely, P. (1985) Microbial xylanolytic systems. Trends Biotechnol Lett. 3:286-290. Bourne, Y., and B. Henrissat (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Current Opinion in Structural Biology.11:593-600. Carmona, E. C., M. R. Brochetto-Braga, A. A. Pizzirani-Kleiner, and J. A. Jorge (1998) Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol Lett. 166:311-315. Cheng, H.-L., L.-C. Tsai, S.-S. Lin, H.-S. Yuan, N.-S. Yang, S.-H. Lee, and L.-F. Shyur (2002)Mutagenesis of Trp54 and Trp203 residues on Fibrobacter succinogenes 1,3-1,4--D-glucanase significantly affects catalytic activities of the enzyme. Biochemistry 41: 8759-8766. Christov, L. P., and B. A. Prior (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microbiol. Technol. 15:460-475. Cleemput, G., M. Hessing, M. Van Oort, M. Deconynck, and J. A. Delcour (1997) Purification and Characterization of a [beta]-D- Xylosidase and an endo-xylanase from Wheat Flour. Plant Physiol. 113:377-386. Collins, T., C. Gerday, and G. Feller (2005) Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiol Rev. 29:3-23. Courtin, C.W., G. G. Gelders, and J. A. Delcour (2001) Use of two endoxylanases with diVerent substrate selectivity for understanding arabinoxylan functionality in wheat Xour breadmaking. Journal of Cereal Chemistry 78:564-571. Fushinobu, S., K. Ito, M. Konno , T. Wakagi, and H. Matsuzawa (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11:1121-1128. Gebler, J., N. R. Gilkes, M. Claeyssens, D. B. Wilson, P. Beguin, W. W. Wakarchuk, D. G. Kilburn, J. R. C. Miller, R. A. Warren, and S. G. Withers (1992) Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. The Journal of Biological Chemistry. 267:12559-12561. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, and R. A. Warren (1991) Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews. 55:303-315. Gomes, J., I. I. gomes, K. Terler, N. Gubala, G. Ditzelmuller, and W. Steiner (2000) Optimisation of culture medium and conditions for alpha-l-Arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol. 27:414-422. Gruber, K., G. Klintschar, M. Hayn, A. Schlacher, W. Steiner, and C. Kratky (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry. 37:13475-13485. Hakulinen, N., O. Turunen, J. Janis, M. Leisola, and J. Rouvinen (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. European Journal of Biochemistry. 270: 1399-1412. Hazlewood, G. P., and H. J. Gilbert (1993) Molecular biology of hemicellulases. P.103. In: Coughlan, M. P. and G. P. Hazlewood (eds), Hemicelluloses and Hemicellulases. Portland Press, London. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene. 81:83-95. Henrissat, B., and P. M. Coutinho (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol. 330:183-201. Jeffries, T. W. (1996) Biochemistry and genetics of microbial xylanase. Current Opinion in Biotechnology. 7:337-342. Jiang, Z., X. Li, S.Yang, L. Li, and S.Tan (2005) Improvement of the bread making quality of wheat Xour by the hyperthermophilic xylanase from Thermotoga maritima. Food Research International. 38:37-43. Jimenez, L., C. Martinez, I. Perez, and F. Lopez (1997) Biobleaching procedures for pulp from agricultural residues using Phanerochaete chrysosporium and enzymes. Process Biochem. 32(4):297-304. Joshi, M. D., G. Sidhu, I. Pot, G. D. Brayer, S. G. Withers, and L. P. McIntosh (2000) Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299:255-279. Kuhad, R. C., and A. Singh (1993) Lignocellulosic biotechnology: current and future prospects. Crit Rev Biotechnol. 13:151-172. Kulkarni, N., A. Shendye, and M. Rao (1999) Molecular and biotech- nological aspects of xylanases. FEMS Microbiology reviews 23:411-456. Kumar, P.R., S. Eswaramoorthy, P. J. Vithayathil, and M. A. Viswamitra (2000) The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. Journal of Molecular Biology. 295:581-593. Kunkel, T. A., (1985) Rapid and efficient site-specific mutagenesis without phenotype selection. Proceedings of the National Academy of Sciences of the United States of America. 82: 488-492. La Grange, D. C., M. claeyssens, I. S. Pretorius, and W. H. Van Zyl (2000) Coexpression of the Bacillus Pumilus beta-xylosidase (xynB) gene with the Trichoderma resei beta xylanase 2(xyn2) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 54:195-200. Liu, J. R., Y. Bi, S. H. Lin, K. J. Cheng, and Y. C. Chen (2005) Direct cloning of a xylanase gene from the mixed genomic DNA of rumen fungi and its expression in intestinal Lactobacillus reuteri. Microbiology Letters. 251:233-241. Lo Leggio, L., S. Kalogiannis, M. K. Bhat, and R. W. Pickersgill (1999) High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins. 36:295-306. McCarter, J. D., and S. G.Withers (1994) Mechanisms of enzymatic glycoside hydrolysis. Current Opinion in Structural Biology. 4:885-892. Messner, K., and E. Serbotnik (1994) Biopulping: An overview of developements in an environmentally safe paper making technolgy. FEMS Microbiology Reviews. 13:351-364. Morales, P., A. Madrarro, A. Flors, J. M. Sendra, and J. A. P. Gonzalez (1995) Purification and characterization of a xylanase and arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol. 17:424-429. Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol. 51:711-729. Polizeli, M. L., A.C.S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 67:577-591. Prade, R.A. (1995) Xylanases: from biology to biotechnology. Biotech- nology and genetic engineering Reviews. 13:100-131. Querol, E., J. A. Perez-Pons, and A. Mozo-Villarias (1996) Analysis of protein conformational characteristics related to thermostability. Protein Eng. 9: 265-271. Rye, C. S., and S. G. Withers (2000) Glycosidase mechanisms. Current Opinion Chemistry Biology. 4:573-580. Shah, A. R., R. K. Shah, and Madamwar, D. (2005) Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresource Technology. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem. 38:1327-1340. Torronen, A., and J. Rouvinen (1997) Structural and functional properties of low molecular weight endo-1,4-β-xylanases. Journal of Biotechnology. 57:137-149. Vanparidon P. A., Booman JCP, Selten GCM, Geerse C, Barug D, deBot PHM, Hemke G (1992) Application of fungal endoxylanase in poultry diets. pp 371-378. In: Visser J, Beldman G, vanSomeran MAK, Voragen, AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam. Vogt, G., S. Woell, and P. Argos (1997) Protein thermal stability, hydrogen bonds and ion pairs. Journal of Molecular Biology. 269:631-643. Wong, K. K. Y., and J. N. Saddler(1993) Multiplicity of 1,4-xylanase in microorganisms, functions and applications. Microbiol Rev. 52 :305-317. Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler (1988) Multiplicity of beta-1,4-xylanases in microorganisms: functions and applications. Microbiological Reviews. 52:305-317. Wong, K. K. Y., and J. N. Saddler (1992a) Applications of hemicellulases in the food, feed, and pulp and paper industries. pp. 127-143. In: Hemicellulose and Hemicellulases (Coughlen, P.P. and Hazlewood, G.P., Eds.) Portland Press, London. Wong, K. K. Y., and J. N. Saddler (1992b) Trichoderma xylanase, their properties and purification. Crit Rev Biotechnol. 12:413-435. Zechel, D. L., and S. G.Withers (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Accounts of Chemical Research. 33:11-18.
|