跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林繼榮
研究生(外文):Chi-Jung Lin
論文名稱:結構材料的奈米複合濕鍍及微弧氧化之窩蝕抵抗性研究
論文名稱(外文):Study on the cavitation erosion resistance of structural materials using nano composite coating and microarc oxidation treatment
指導教授:何主亮何主亮引用關係陳克昌陳克昌引用關係
指導教授(外文):Ju-liang HeKeh-chang Chen
學位類別:博士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:207
中文關鍵詞:窩蝕微弧氧化複合濕鍍無電鍍
外文關鍵詞:Composite coatingMicroarc oxidationCavitation erosionElectroless plating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:1
窩蝕(Cavitation erosion)現象是一固體置於液體之中,液體因受擾動或壓力變化所產生的氣泡在固體臨近的表面破碎時所造成固體表面材料逐漸流失的過程。窩蝕所帶來的損壞通常不是短時間可以觀察到,但是長時間對材料所造成的破壞是相當可觀,而且元件破壞的損失及對人員安全性的影響更是不容小覷。在追求更具窩蝕抵抗性的金屬或合金材料的努力之外,目前昂貴的合金價格也趨使研究人員嘗試表面工程技術應用到一般性結構用金屬材,以合理的價格來有效提升窩蝕抵抗性。先後已有許多表面技術如熱噴塗(Thermal spray)、離子氮化(Ion nitriding)、雷射銲覆(Laser surfacing)等嘗試來改善結構件窩蝕抵抗性,然其昂貴設備、高製作成本及大面積困難性使得濕鍍法(Wet process)可能成為抗窩蝕表面工程的另一種替代性方案。
本研究利用較低成本的複合濕鍍碳化矽與微弧氧化技術,分別表面處理於AISI 1045碳鋼及AA 7075鋁合金這兩種常用的金屬結構材。在複合濕鍍方面,希望利用複合濕鍍碳化矽層的高硬度及鎳鍍層本身的高耐蝕性來提升其窩蝕抵抗性,並分別比較微米碳化矽及奈米碳化矽的添加效應以及熱處理前後的差異;在微弧氧化方面,是希望利用微弧氧後表面的高硬度氧化層來提升窩蝕抵抗性,但因微弧氧化製程本身特性所造的表面粗化可能會對窩蝕造成負面影響,因此在完成微弧氧化後,再被覆一層RTV 118的彈性體,來改善表面粗化所造成的影響。窩蝕測試的水溶液分別為純水及3.5 wt.%鹽水中。
研究結果顯示,無電鍍鎳及其複合濕鍍碳化矽未經熱處理之試片,因鍍層與基材間的附著力不足,在窩蝕過程中鍍層會從此界面剝落,造成大量的質量損失。而無電鍍鎳試片經熱處理後即可提升窩蝕抵抗性;複合濕鍍微米級碳化矽經熱處理試片可進一步減少無電鍍鎳層在窩蝕測試中的破壞,而使得窩蝕抵抗性可得到進一步的提升,但是表面粗度增加以致於在窩蝕測試的質量損失過大;複合濕鍍奈米碳化矽經熱處理試片不僅可以可阻止無電鍍鎳的在窩蝕過程中所造成的損壞,更可提供平整的表面,是具有最佳窩蝕抵抗性的主要原因。
在微弧氧化方面,兩種電解液所處理之氧化層硬度均可增加至1000 HV以上,在經2 h微弧處理之後,使用矽酸鹽電解液試片厚度可達100 mm,而磷酸鹽電解液則是20 mm。由於微弧氧化製程本身的特性,在微弧氧化完成後,試片表面會殘留許多孔道及熔融區域,造成試片表面粗度上升,因此使用的兩種電解液處理試片之窩蝕質量損失均大於原材。而基材與氧層的硬度落差太大也可能是造成氧化層抗窩蝕性不佳的原因。若在微弧氧化處理完後,表面再被覆一層RTV118彈性體,則可大幅提升其抗窩蝕性,但殘留於介面間的氣泡會隨著窩蝕測試時間增加而逐漸變大,且氣泡的數量會隨著表面粗度的增加而變多。
本研究結果中發現,利用複合濕鍍奈米碳化經後熱處理後,鍍層具有高硬度及平整性,奈米碳化矽則可阻止裂紋的延伸,進而提升結構件的窩蝕抵抗性,然而,微弧氧化後之表面粗度提高,且氧化層與基材的硬度落差大,因此窩蝕抵抗性不佳,但在氧化層表面被覆一層RTV118彈性體後,可吸收部份窩蝕的衝擊波來達到提升其窩蝕抵抗性的目的。
The generation and collapse of bubbles at the surface of a component caused by repeated sudden pressure changes of fluid, can lead to cavitation erosion. The collapsing bubbles result in the emission of shock waves and micro-jets which leads to plastic deformation, fatigue, fracture or material loss. It is hard to observe the damage of cavitation erosion until substantial material removal for a long service time. There are many surface modification technologies to improve cavitaiton erosion for structural materials today, such as thermal spray, ion nitriding and laser surfacing. Most of them are high cost and difficult to scale up. Wet process maybe an alternative to the above mentioned techniques in cavitaiton erosion resistant surface modification.
In this study, Ni-P-SiC composite coating and microarc oxidation (MAO) are applied on AISI 1045 carbon steel and AA 7075 aluminum alloy, respectively. The Ni-P-SiC composite coating can provide high surface hardness and the Ni-P matrix presents high corrosion resistance to be expected for synergistically improving cavitation erosion resistance. Ni-P, Ni-P-(micro)SiC and Ni-P-(nano)SiC with and without post heat treatment were evaluated. Microarc oxidized surface layer with extreme high hardness may also be expected to the improvement cavitation erosion resistance for metal aluminum. However the high surface roughness of microarc oxidized layer was suspicious to be negative to cavitation erosion resistance, an elastomer infiltration is proposed to the cavitation resistance improvement by absorbing the shock waves and micro-jets energy. The cavitation erosion test was carried out in distilled water and 3.5 wt.% NaCl solution.
The results show that electroless nickel plating without post heat treatment show poor cavitation erosion resistance due to the electroless nickel film peeled off easily during cavitation erosion and it can be improved by post heat treatment. The failure of the heat treated specimen is due to crack extend along the surface defect and fatigue. The specimens of Ni-P-(micro)SiC composite coating can prevent from the crack extend but high surface make high mass loss. The specimens of Ni-P-(nano)SiC composite coating with post heat treatment has best cavitation erosion resistance due to the (nano) SiC can prevent from the crack extend in the matrix and also have smooth surface.
After microare oxidation treatment, the surface hardness of AA 7075 aluminum alloy can reach 1000 HV in both silicate and phosphate electrolytes. The oxide layer thickness of the silicate electrolyte is about 100 mm and phosphate electrolyte is about 20 mm. However, the high surface roughness is caused by discharge during microarc process and show poor cavitation erosion resistance. The great hardness difference between the oxide layer and Al substrate may be the reason for poor cavitation erosion resistance. Elastomer infiltration give much improvement of the cavitaiton erosion resistance of micoarc oxidized treatment specimen with bubbles presented at the interface of elastomer and oxide layer. The number of bubbles was affected by the surface roughness
In this study, Ni-P-(nano)SiC composite coating was found to effectively protect steel substrate from cavitation erosion due to synergistically strengthening of nano-SiC and high hardness matrix that prevent crack propagation. The high surface roughness of microarc oxidized, although high hardness gives rise to poor cavitation erosion resistance due to easily peel off of the oxidized layer. After elastomer infiltration on the microarc oxidized surface, the elastomer absorbs micro-jets energy to improve the cavitation erosion resistance of the microarc oxidized as well as blank specimens.
中文摘要 I
英文摘要 III
總目錄 VI
圖目錄 IX
表目錄 XVII
第一章 前言 1
第二章 文獻回顧 4
2-1 窩蝕 4
2-1-1 窩蝕原理 4
2-1-2 窩蝕之檢測 7
2-1-3 材料之窩蝕特性 8
2-1-4 窩蝕的防治 23
2-2複合濕鍍 38
2-2-1 無電鍍鎳之沿革及原理 39
2-2-2 各種施鍍參數對無電鍍鎳製程的影響 40
2-2-3 複合濕鍍沉積原理及參數影響 48
2-2-4複合濕鍍應用 51
2-3 微弧氧化 54
2-3-1 電漿在電解液中的反應 55
2-3-2 微弧氧化與電漿電解浸透之電壓電流特性 60
2-3-3 微弧氧化與電漿電解浸透過程 62
2-3-4 微弧氧化與電漿電解浸透電解液的選擇 64
2-3-5 微弧氧化反應、模型及結構 64
2-3-6 微弧氧化應用 80
第三章 實驗方法與步驟 83
3-1 試片準備 84
3-2 複合濕鍍 84
3-2-1 試片前處理 84
3-2-2 複合濕鍍程序 85
3-2-3 後熱處理 88
3-3 微弧氧化 88
3-3-1 試片前處理 88
3-3-2 微弧氧化程序 89
3-4 窩蝕測試 92
3-5 直流極化試驗 93
3-6 微觀及結構分析 95
第四章 複合濕鍍碳化矽之窩蝕探討 96
4-1無電鍍鎳層之微觀組織及基本特性 96
4-2 熱處理對無電鍍鎳鍍層窩蝕抵抗性之影響 98
4-3 表面粗度對無電鍍鎳層之窩蝕之影響 115
4-4複合濕鍍碳化矽鍍層之微觀組織及基本特性 120
4-5 複合濕鍍碳化矽鍍層之窩蝕特性及機制 126
4-6 米級碳化矽含量對鍍層抗窩蝕性影響 136
4-7 結論 137
第五章 微弧氧化之窩蝕探討 138
5-1微弧氧化層之微觀組織及基本特性 138
5-2矽酸鹽微弧氧化層之窩蝕特性及機制 148
5-3磷酸鹽微弧氧化層之窩蝕特性及機制 156
5-4微弧氧化層表面被覆RTV118之窩蝕特性及機制 165
5-5 結論 173
第六章 總結論 174
誌謝 176
參考文獻 177
未來展望及研究建議 186
個人簡介 187
[1] K. G. Budinski, “Surface Engineering for Wear Resistance,” Prentice-Hall, Inc., New York, (1988) 24.
[2] K. Sugiyama, S. Nakahama, S. Hattori and K. Nakano, “Slurry Wear and Cavitation Erosion of Thermal-sprayed Cermets”, Wear, 258 (2005) 768-775.
[3] W.H. Huang, K.C. Chen and J.L. He, “A Study on the Cavitation Resistance of Ion-nitrided Steel”, Wear, 252 (2002) 459-466.
[4] F.T. Cheng, K.H. Lo and H.C. Man, “A Preliminary Study of Laser Cladding of AISI 316 Stainless Steel Using Preplaced NiTi Wire”, Materials Science and Engineering A, 382 (2004) 20-29.
[5] 王紀雯,”複合電鍍之簡介”,材料與社會,第32期,1989,8月,第37~39頁。
[6] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
[7] A.A. Voevodin, A.L. Yerokhin, V.V Lyubimov, M.S. Donley and J.S. Zabinski, “Characterization of Wear Protective Al-Si-O Coating Formed on Al-based Alloys by Micro-arc Discharge Treatment”, Surface and Coatings Technology, 86-87 (1996) 516-521.
[8] B. Byas and C. M. Preece, “Stress Produced in a Solid by Cavitation,” Journal of Applied Physics, 47 (1976) 5133-5138.
[9] Y. Tomita and A. Shima, “ Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” Journal of Fluid Mechanics, 169 (1986) 535-564.
[10] R. F. Patella and J. L. Reboud, “A New Approach to Evalvate the Cavitation Erosion Power,” Journal of Fluids Engineering, 120 (1998) 335-344.
[11] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 84.
[12] 劉君祖,牛頓現代科技大百科,第13冊-物理科學(I)-物理篇,牛頓出版股份有限公司,(1989) 35。
[13] J. G. Auret, O. F. R. A. Damm, G. J. Wright, and F. P. A. Robinson, “Cavitation Erosion of Copper and Aluminum in Water at Elevated Temperature,” Tribology International, 26 (1993) 421-429.
[14] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 85.
[15] J. Steller, “International Cavitation Erosion Test and Quantitative Assessment of Material Resistance to Cavitation,” Wear, 233-235 (1999) 51-64.
[16] H. G. Feller and Y. Kharrazi, “Cavitation Erosion of Metals and Alloys,” Wear, 93 (1984) 249-260.
[17] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion of Duplex and Super Duplex Stainless Steels,” Scripta Materialia, 39 (1998) 1229-1236.
[18] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion and Damage Mechanisms of Alloys with Duplex Structure,” Materials Science and Engineering: A, 242 (1998) 108-120.
[19] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 86-87.
[20] A. Al-Hashem, P.G. Caceres, W.T. Taid, and H.M. Shalaby, “Cavitation Corrosion Behavior of Cast Nickel-Aluminum Bronze in Seawater,” Corrosion, 51 (1995) 331-342.
[21] A. Al-Hashem, P.G. Caceres, A. Abudullah, and H.M. Shalaby, “Cavitation Corrosion of Duplex Stainless Steel in Seawater,” Corrosion, 53 (1997) 103-113.
[22] G. B. Jiang, Y. L. Zheng, Y. Y. Yang, and H. S. Fang, “Cavitation Erosion of Bainitic Steel,” Wear, 215 (1998) 46-53.
[23] S. C. Chang, W. H. Weng, H. C. Chen, S. J. Lin, and P. C. K. Chung, “The Cavitation Erosion of Fe-Mn-Al alloys,” Wear, 181-183 (1995) 511-515.
[24] M. G. D. V. Cuppari, F. Wischnowski, D. K. Tanaka, and A. Sinatora, “Correlation between Microstructure and Cavitation-erosion Resistance of High-chormium Cast Steel-Preliminary Results,” Wear, 225-229 (1999) 517-522.
[25] R. H. Richman, A. S. Rao and D. E. Hodgson, "Cavitation Erosion of Two NiTi Alloys,” Wear, 157 (1992) 401-407.
[26] C. H. Yeh, H. C. Lin, K. M. Lin, J. L. He, and C. H. Yang, “A study of Cavitation Erosion Characteristics of TiNi Shape Memory Alloys,” Journal of Feng Chia University, 36 (1999) 125-130.
[27] R. L. Howard and A. Ball, “Mechanisms of Cavitation of TiAl-based Titanium Aluminide Intermetallic Alloys,” Acta Materialia, 44 (1996) 3157-3168.
[28] R. N. Wright, “Cavitation Erosion and Abrasive Wear of Ni3Al Alloys,” Intermetallics, 3 (1995) 389-396.
[29] A. Akhtar, R. Salvi and V. K. Sikka, “Cavitation Erosion of NiAl,” Metallurgical and Materials Transactions A, 30A (1999) 335-343.
[30] W. J. Tomlinson, N. Kalitsounakis and G. Vekinis, “Cavitation Erosion of Aluminas,” Cermics International, 25 (1999) 331-338.
[31] V.A. Pugsley and C. Allen, “Microstructure/Property Relationships in the Cavitation Erosion of Tungsten Carbide-cobalt,” Wear, 233-235 (1999) 93-103.
[32] W. J. Tomlinson, R. T. Moule and G. N. Blount, “The Effect of Shot Peening on the Cavitation Erosion of Pure Iron and Austentic Stainless Steel in Distilled and 1% Salt Waters,” Wear, 118 (1988) 233-242.
[33] C. M. Preece and E. N. Kaufmann, “The Effect of Boron Implantation on the Cavitation Erosion Resistance of Copper and Nickel,” Corrosion Science, 22 (1982) 267-281.
[34] J. H. Wu and G. C. Chai, “Effect of N+ Ion Implantation on Surafce Modification of Cavitation Damage for 0Cr13Ni9Ti SS of Turbine Materials,” Journal of Fluids Engineering, 119 (1997) 204-208.
[35] B. S. Mann, “Boronizing of Cast Martensitic Chromium Nickel Stainless and Its Abrasion and Cavitation-erosin Behaviour,” Wear, 208 (1997) 125-131.
[36] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion and Pitting Corrosion of Laser Surface Melted Stainless Steels,” Surface and Coatings Technology, 99 (1998) 295-304.
[37] C. T. Kwok, F. T. Cheng, and H. C. Man, “Laser Surface Modification of UNS S31603 Stainless Steel Using NiCrSiB Alloy for Enhancing Cavitation Erosion Resistance,’ Surface and Coatings Technology, 107 (1998) 31-40.
[38] B. G. Gireń, M. Szkodo, and Steller, “The Influence of Residual Stresses on Cavitation Resistance of Metals - An Analysis Based on Investigations of Metals Remelted by Laser Beam and Optical Discharge Plasma,” Wear, 233-235 (1999) 86-92.
[39] R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, 75 (1996) 43-49.
[40] Y. Iwai, T. Okada, T. Fulieda, and K. Awazu, “Effect of Hard Chromium Plating on Cavitation Erosion,” Wear, 128 (1988) 189-200.
[41] K. S. Zhou, D. Z. Wang and M. Liu, “A Study of the Cavitation Erosion Behavior of a Ti-Ni Alloy Coating,” Surface and Coatings Technology, 34 (1987) 79-87.
[42] H. Hiraga, T. Inoue, H. Shimura, and A. Matsunawa, “Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hynrid Spraying,” Wear, 231 (1999) 272-278.
[43] R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, 75 (1996) 43-49.
[44] M. Szkodo, B. G. Gireń and J. Steller, “Cavitation Resistance of New Chromium-mangance and Chromium-cobalt Electrodes and Their Metallographic Structures,” Wear, 233-235 (1999) 111-119.
[45] K. Sang and Y. Li, “Cavitation Erosion of Flame Spray Weld Coating of Nickel-based Alloy Powder,” Wear, 189 (1995) 20-24.
[46] 吳建德、鍾長祥、吳柏成、謝運華、王家瓚、彭煃政,高速火焰熔射塗層穴蝕特性,中國材料科學學會1993年年會論文集8-27頁。
[47] S. Münsterer and K. Kohlhof, “Cavitation Protection by Low Temperature TiCN Coatings,” Surface and Coatings Technology, 74-75 (1995) 642-647.
[48] J. Zhang, M. O. W. Richardson, G. D. Wilcox, J. Min, and X. Wang, “Assessment of Resistance of Non-metallic Coatings to Silt Abrasion and Cavitation Erosion in a Rotating Disk Test Rig,” Wear, 194 (1996) 149-155.
[49] D. A. Woodford, “Cavitation-Erosion-Induced Phase Transformations in Alloys,” Metallurgical Transactions, 3 (1972) 1137-1145.
[50] B. C. S. Rao and D. H. Buckley, “Deformation and Erosion of F.C.C. Metals and Alloys under Cavitation Attack,” Materials Science and Engineering, 67 (1984) 55-67.
[51] A. Karimi and J. L. Martin, “Cavitation Erosion of Materials,” International Metals Reviews, 31 (1986) 1-26.
[52] R. H. Richman, A. S. Rao and D. Kung, “Cavitation Erosion of NiTi Explosively Welded to Steel,” Wear, 181-183 (1995) 80-85.
[53] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 5-8.
[54] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 9-11.
[55] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 17-20.
[56] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 38-40.
[57] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 41-44.
[58] I. Apachitei, F.D. Tichelaar, J. Duszczyk and L. Katgerman, “The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP and NiP-SiC Coating”, Surface and Coatings Technology, 149 (2002) 263-278.
[59] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 74-78.
[60] P. S. Kumar and P.K. Nair, “Studies on Crystallization of Electroless Ni-P Deposits”, Journal of Materials Processing Technology, 56 (1996) 511-520.
[61] I. Apachitei, J. Duszczyk, L. Katgerman and P.J.B. Overkamp, “Electroless Ni-P Composite Coating: The Effect of Heat Treatment on the Microhardness of Substrate and Coating”, Scripta Materialia, 38 (1998) 1347-1353.
[62] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 205-219.
[63] S.M. Moonir-Vaghefi, A. Saatchi and J. Hedjazi, “Tribological Behaviour of Electroless Ni-P-MoS2 Composite Coating”, Zeitschrift Fur Metallkunde, 88 (1997) 498-501.
[64] Y.C. Chang, Y.Y. Chang and C.I. Lin, “Process Aspects of the Electrolytic Codeposition of Molybdenum Disulfide with Nickel”, Electrochimica Acta, 43 (1998) 315-324.
[65] P.R. Ebdon, “The Performance of Electroless Nickel/PTFE Composites”, Plating and Surface Finishing, September (1998) 65-68
[66] Q. Zhao, Y. Liu, H. Müller-Steinhagen and G. Liu, “Graded Ni-P-PTFE Coating and Their Potential Applications”, Surface and Coatings Technology, 155 (2002) 279-284.
[67] R. Narayan and B.H. Narayana, “Electrodeposited Chromium-graphite Composite Coatings”, Journal of the Electrochemical Society, 128 (1981) 1704-1708.
[68] W.X. Chen, J.P. Tu, H.Y. Gan, Z.D. Xu, Q.G. Wang, J.Y. Lee, Z.L. Liu and Z.B. Zhang, “Electroless Preparation and Tribological Properties of Ni-P-Carbon Nanotube Composite Coatings under Lubricated Condition”, Surface and Coatings Technology, 160 (2002) 68-73.
[69] A. Grosjean, M. Rezrazi and M. Tachez, “Study of the Surface Charge of Silicon Carbide (SiC) Particles for Electroless Composite Deposits: Nickel-SiC”, Surface and Coatings Technology, 96 (1997) 300-304.
[70] K.H. Hou, M.D. Ger, L.M. Wang and S.T. Ke, “The Wear Behaviour of Electro-Codeposited Ni-SiC Composites”, Wear, 253 (2002) 994-1003.
[71] J. Zahavi and J. Hazan, “Electrodeposited Nickel Composite Containing Diamond Particles”, Plating and Surface Finishing, February (1983) 57-61.
[72] M. Pushpavanam, “Electroless Ni-P-Al2O3 Composites”, Bulletin of Electrochemistry, 8 (1992) 399-401.
[73] Y.S. Huang, X.T. Zeng, I. Annergren and F.M. Liu, “Development of Electroless NiP-PTFE-SiC Composite Coating,” Surface and Coatings Technology, 167 (2003) 207-211.
[74] 田福助,電化學基本原理與應用,五洲出版社,(1992),第39頁。
[75] N. Guglielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths”, Journal of Electrochemical Society, 119 (1972) 1009-1012.
[76] 覃奇賢,郭鶴桐,張宏祥,劉淑關,”電鍍原理與工藝”,天津科學技術出版社,1985,第268~270頁。
[77] 覃奇賢,郭鶴桐,張宏祥,劉淑關,”電鍍原理與工藝”,天津科學技術出版社,1985,第272~274頁。
[78] W. McNiell, G. F. Nordbloom, “Method of Making Cadmium Niobate,” US Patent 2854390 (1958).
[79] W. McNiell and L. L. Gruss, “Anodic Spark Reaction Process and Articles,” US Patent 3293158 (1966).
[80] 鐘時俊,Oleg Demine,翁榮洲,”微電弧氧化表面處理原理與應用”,工業材料雜誌,第194期,民國92年2月,第176-180頁。
[81] 襲建軍,辛鐵柱,羅晶,高彩橋,”鋁及鋁合金微弧氧化技術的特點及應用”,航天製造技術,第4期,2002年8月,第44-47頁。
[82] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina and A. Leyland, P. Pilkington and A. Matthews, “Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum”, Journal of Physics D: Applied Physics, 36 (2003) 2110-2120.
[83] 蔣百靈,白力靜,蔣永鋒,張淑芬,”鋁合金微弧氧化技術”,西安理工大學學報,第16卷,第2期,2000年,第138-142頁。
[84] 薛文斌,邓志威,來永春,陳如意,張通和,”有色金屬表面微弧氧化技術評述”,金屬熱處理,第1期,2000年,第1-3頁。
[85] L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, D.O. Misnyankin, A. Pilkington, A. Leyland and A. Matthews, “A Model for Galvanostatic Anodizing of Al in Alkaline Solutions”, Electrochimica Acta, 50 (2005) 5458-5464.
[86] Y.F. Kuang, Z.H. Hou and J.P. Liu, “Development of Electric Breakdown Theory of Anodic Oxidation”, Electroplating and Finishing, 19 (2000) 38-45.
[87]S. Ikonopisov, “Theory of Electrical Breakdown During Formation of Barrier Anodic Films”, Electrochimica Acta, 22 (1977) 1077-1082.
[88] V. Kadary and N. Klein, “Electrical Breakdown I. During the Anodic Growth of Tantalum Pentoxide”, Journal of the Electrochemical Society, 127 (1980) 139-151.
[89] J.M. Albella, I. Montero and J.M. Martinez-Duart, “A Theory of Avalanche Breakdown During Anodic Oxidation”, Electrochimica Acta, 32 (1987) 255-258.
[90] A. Hicking and M. D. Ingram, “Contact Glow-Discharge Electrolysis”, Transactions of the Faraday Society, 60 (1964) 783-793
[91] G. Sundararajan and L. Rama Krishna, “Mechanisms Underlying the Formation of Thick Alumina Coatings Through the MAO Coating Technology”, Surface and Coatings Technology, 167 (2003) 269-277.
[92]石玉龍、茹鳳虎、彭紅端、謝廣文,“鋁材表面的等離子微弧氧化技術研究”,電鍍與塗飾,第19卷,2000年,第15-18頁。
[93]襲建軍、辛鐵柱、羅晶、高彩橋,“鋁及鋁合金微弧氧化技術的特點及應用”,航天製造技術,第4卷,2002年,第44-47頁。
[94]薛文斌、鄧志威、來永春、陳如意、張通和,“有色金屬表面微弧氧化技術評述”,金屬熱處理,第1卷,2000年,第1-3頁。
[95] E. L. Schmeling, B. Roschenbleck, and M. H. Weidemann, “Method of Producing Protective Coatings that are Resistant to Corrosion and Wear on Magnesium and Magnesium alloys” , US Patent 4978432, 1990.
[96] D. E. Bartak, B. E. Lemieux, and E. R. Woolsey, “Two-step Electrochemical Process for Coating Magnesium Alloys”, US Patent 5264113, 1993
[97] http://210.31.64.61/brc_Chinese/MicArc.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top