[1] K. G. Budinski, “Surface Engineering for Wear Resistance,” Prentice-Hall, Inc., New York, (1988) 24.
[2] K. Sugiyama, S. Nakahama, S. Hattori and K. Nakano, “Slurry Wear and Cavitation Erosion of Thermal-sprayed Cermets”, Wear, 258 (2005) 768-775.
[3] W.H. Huang, K.C. Chen and J.L. He, “A Study on the Cavitation Resistance of Ion-nitrided Steel”, Wear, 252 (2002) 459-466.
[4] F.T. Cheng, K.H. Lo and H.C. Man, “A Preliminary Study of Laser Cladding of AISI 316 Stainless Steel Using Preplaced NiTi Wire”, Materials Science and Engineering A, 382 (2004) 20-29.
[5] 王紀雯,”複合電鍍之簡介”,材料與社會,第32期,1989,8月,第37~39頁。[6] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
[7] A.A. Voevodin, A.L. Yerokhin, V.V Lyubimov, M.S. Donley and J.S. Zabinski, “Characterization of Wear Protective Al-Si-O Coating Formed on Al-based Alloys by Micro-arc Discharge Treatment”, Surface and Coatings Technology, 86-87 (1996) 516-521.
[8] B. Byas and C. M. Preece, “Stress Produced in a Solid by Cavitation,” Journal of Applied Physics, 47 (1976) 5133-5138.
[9] Y. Tomita and A. Shima, “ Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” Journal of Fluid Mechanics, 169 (1986) 535-564.
[10] R. F. Patella and J. L. Reboud, “A New Approach to Evalvate the Cavitation Erosion Power,” Journal of Fluids Engineering, 120 (1998) 335-344.
[11] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 84.
[12] 劉君祖,牛頓現代科技大百科,第13冊-物理科學(I)-物理篇,牛頓出版股份有限公司,(1989) 35。
[13] J. G. Auret, O. F. R. A. Damm, G. J. Wright, and F. P. A. Robinson, “Cavitation Erosion of Copper and Aluminum in Water at Elevated Temperature,” Tribology International, 26 (1993) 421-429.
[14] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 85.
[15] J. Steller, “International Cavitation Erosion Test and Quantitative Assessment of Material Resistance to Cavitation,” Wear, 233-235 (1999) 51-64.
[16] H. G. Feller and Y. Kharrazi, “Cavitation Erosion of Metals and Alloys,” Wear, 93 (1984) 249-260.
[17] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion of Duplex and Super Duplex Stainless Steels,” Scripta Materialia, 39 (1998) 1229-1236.
[18] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion and Damage Mechanisms of Alloys with Duplex Structure,” Materials Science and Engineering: A, 242 (1998) 108-120.
[19] M. G. Fontana and N. D. Greene, “Corrosion Engineering,” McGraw-Hill Book Company, New York, (1978) 86-87.
[20] A. Al-Hashem, P.G. Caceres, W.T. Taid, and H.M. Shalaby, “Cavitation Corrosion Behavior of Cast Nickel-Aluminum Bronze in Seawater,” Corrosion, 51 (1995) 331-342.
[21] A. Al-Hashem, P.G. Caceres, A. Abudullah, and H.M. Shalaby, “Cavitation Corrosion of Duplex Stainless Steel in Seawater,” Corrosion, 53 (1997) 103-113.
[22] G. B. Jiang, Y. L. Zheng, Y. Y. Yang, and H. S. Fang, “Cavitation Erosion of Bainitic Steel,” Wear, 215 (1998) 46-53.
[23] S. C. Chang, W. H. Weng, H. C. Chen, S. J. Lin, and P. C. K. Chung, “The Cavitation Erosion of Fe-Mn-Al alloys,” Wear, 181-183 (1995) 511-515.
[24] M. G. D. V. Cuppari, F. Wischnowski, D. K. Tanaka, and A. Sinatora, “Correlation between Microstructure and Cavitation-erosion Resistance of High-chormium Cast Steel-Preliminary Results,” Wear, 225-229 (1999) 517-522.
[25] R. H. Richman, A. S. Rao and D. E. Hodgson, "Cavitation Erosion of Two NiTi Alloys,” Wear, 157 (1992) 401-407.
[26] C. H. Yeh, H. C. Lin, K. M. Lin, J. L. He, and C. H. Yang, “A study of Cavitation Erosion Characteristics of TiNi Shape Memory Alloys,” Journal of Feng Chia University, 36 (1999) 125-130.
[27] R. L. Howard and A. Ball, “Mechanisms of Cavitation of TiAl-based Titanium Aluminide Intermetallic Alloys,” Acta Materialia, 44 (1996) 3157-3168.
[28] R. N. Wright, “Cavitation Erosion and Abrasive Wear of Ni3Al Alloys,” Intermetallics, 3 (1995) 389-396.
[29] A. Akhtar, R. Salvi and V. K. Sikka, “Cavitation Erosion of NiAl,” Metallurgical and Materials Transactions A, 30A (1999) 335-343.
[30] W. J. Tomlinson, N. Kalitsounakis and G. Vekinis, “Cavitation Erosion of Aluminas,” Cermics International, 25 (1999) 331-338.
[31] V.A. Pugsley and C. Allen, “Microstructure/Property Relationships in the Cavitation Erosion of Tungsten Carbide-cobalt,” Wear, 233-235 (1999) 93-103.
[32] W. J. Tomlinson, R. T. Moule and G. N. Blount, “The Effect of Shot Peening on the Cavitation Erosion of Pure Iron and Austentic Stainless Steel in Distilled and 1% Salt Waters,” Wear, 118 (1988) 233-242.
[33] C. M. Preece and E. N. Kaufmann, “The Effect of Boron Implantation on the Cavitation Erosion Resistance of Copper and Nickel,” Corrosion Science, 22 (1982) 267-281.
[34] J. H. Wu and G. C. Chai, “Effect of N+ Ion Implantation on Surafce Modification of Cavitation Damage for 0Cr13Ni9Ti SS of Turbine Materials,” Journal of Fluids Engineering, 119 (1997) 204-208.
[35] B. S. Mann, “Boronizing of Cast Martensitic Chromium Nickel Stainless and Its Abrasion and Cavitation-erosin Behaviour,” Wear, 208 (1997) 125-131.
[36] C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion and Pitting Corrosion of Laser Surface Melted Stainless Steels,” Surface and Coatings Technology, 99 (1998) 295-304.
[37] C. T. Kwok, F. T. Cheng, and H. C. Man, “Laser Surface Modification of UNS S31603 Stainless Steel Using NiCrSiB Alloy for Enhancing Cavitation Erosion Resistance,’ Surface and Coatings Technology, 107 (1998) 31-40.
[38] B. G. Gireń, M. Szkodo, and Steller, “The Influence of Residual Stresses on Cavitation Resistance of Metals - An Analysis Based on Investigations of Metals Remelted by Laser Beam and Optical Discharge Plasma,” Wear, 233-235 (1999) 86-92.
[39] R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, 75 (1996) 43-49.
[40] Y. Iwai, T. Okada, T. Fulieda, and K. Awazu, “Effect of Hard Chromium Plating on Cavitation Erosion,” Wear, 128 (1988) 189-200.
[41] K. S. Zhou, D. Z. Wang and M. Liu, “A Study of the Cavitation Erosion Behavior of a Ti-Ni Alloy Coating,” Surface and Coatings Technology, 34 (1987) 79-87.
[42] H. Hiraga, T. Inoue, H. Shimura, and A. Matsunawa, “Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hynrid Spraying,” Wear, 231 (1999) 272-278.
[43] R. Menon, “New Developments in Hardfacing Alloys,” Welding Journal, 75 (1996) 43-49.
[44] M. Szkodo, B. G. Gireń and J. Steller, “Cavitation Resistance of New Chromium-mangance and Chromium-cobalt Electrodes and Their Metallographic Structures,” Wear, 233-235 (1999) 111-119.
[45] K. Sang and Y. Li, “Cavitation Erosion of Flame Spray Weld Coating of Nickel-based Alloy Powder,” Wear, 189 (1995) 20-24.
[46] 吳建德、鍾長祥、吳柏成、謝運華、王家瓚、彭煃政,高速火焰熔射塗層穴蝕特性,中國材料科學學會1993年年會論文集8-27頁。
[47] S. Münsterer and K. Kohlhof, “Cavitation Protection by Low Temperature TiCN Coatings,” Surface and Coatings Technology, 74-75 (1995) 642-647.
[48] J. Zhang, M. O. W. Richardson, G. D. Wilcox, J. Min, and X. Wang, “Assessment of Resistance of Non-metallic Coatings to Silt Abrasion and Cavitation Erosion in a Rotating Disk Test Rig,” Wear, 194 (1996) 149-155.
[49] D. A. Woodford, “Cavitation-Erosion-Induced Phase Transformations in Alloys,” Metallurgical Transactions, 3 (1972) 1137-1145.
[50] B. C. S. Rao and D. H. Buckley, “Deformation and Erosion of F.C.C. Metals and Alloys under Cavitation Attack,” Materials Science and Engineering, 67 (1984) 55-67.
[51] A. Karimi and J. L. Martin, “Cavitation Erosion of Materials,” International Metals Reviews, 31 (1986) 1-26.
[52] R. H. Richman, A. S. Rao and D. Kung, “Cavitation Erosion of NiTi Explosively Welded to Steel,” Wear, 181-183 (1995) 80-85.
[53] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 5-8.
[54] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 9-11.
[55] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 17-20.
[56] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 38-40.
[57] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 41-44.
[58] I. Apachitei, F.D. Tichelaar, J. Duszczyk and L. Katgerman, “The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP and NiP-SiC Coating”, Surface and Coatings Technology, 149 (2002) 263-278.
[59] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 74-78.
[60] P. S. Kumar and P.K. Nair, “Studies on Crystallization of Electroless Ni-P Deposits”, Journal of Materials Processing Technology, 56 (1996) 511-520.
[61] I. Apachitei, J. Duszczyk, L. Katgerman and P.J.B. Overkamp, “Electroless Ni-P Composite Coating: The Effect of Heat Treatment on the Microhardness of Substrate and Coating”, Scripta Materialia, 38 (1998) 1347-1353.
[62] W. Riedel, “Electroless Nickel Plating”, Redwood Press, Great Britain, 1991, pp. 205-219.
[63] S.M. Moonir-Vaghefi, A. Saatchi and J. Hedjazi, “Tribological Behaviour of Electroless Ni-P-MoS2 Composite Coating”, Zeitschrift Fur Metallkunde, 88 (1997) 498-501.
[64] Y.C. Chang, Y.Y. Chang and C.I. Lin, “Process Aspects of the Electrolytic Codeposition of Molybdenum Disulfide with Nickel”, Electrochimica Acta, 43 (1998) 315-324.
[65] P.R. Ebdon, “The Performance of Electroless Nickel/PTFE Composites”, Plating and Surface Finishing, September (1998) 65-68
[66] Q. Zhao, Y. Liu, H. Müller-Steinhagen and G. Liu, “Graded Ni-P-PTFE Coating and Their Potential Applications”, Surface and Coatings Technology, 155 (2002) 279-284.
[67] R. Narayan and B.H. Narayana, “Electrodeposited Chromium-graphite Composite Coatings”, Journal of the Electrochemical Society, 128 (1981) 1704-1708.
[68] W.X. Chen, J.P. Tu, H.Y. Gan, Z.D. Xu, Q.G. Wang, J.Y. Lee, Z.L. Liu and Z.B. Zhang, “Electroless Preparation and Tribological Properties of Ni-P-Carbon Nanotube Composite Coatings under Lubricated Condition”, Surface and Coatings Technology, 160 (2002) 68-73.
[69] A. Grosjean, M. Rezrazi and M. Tachez, “Study of the Surface Charge of Silicon Carbide (SiC) Particles for Electroless Composite Deposits: Nickel-SiC”, Surface and Coatings Technology, 96 (1997) 300-304.
[70] K.H. Hou, M.D. Ger, L.M. Wang and S.T. Ke, “The Wear Behaviour of Electro-Codeposited Ni-SiC Composites”, Wear, 253 (2002) 994-1003.
[71] J. Zahavi and J. Hazan, “Electrodeposited Nickel Composite Containing Diamond Particles”, Plating and Surface Finishing, February (1983) 57-61.
[72] M. Pushpavanam, “Electroless Ni-P-Al2O3 Composites”, Bulletin of Electrochemistry, 8 (1992) 399-401.
[73] Y.S. Huang, X.T. Zeng, I. Annergren and F.M. Liu, “Development of Electroless NiP-PTFE-SiC Composite Coating,” Surface and Coatings Technology, 167 (2003) 207-211.
[74] 田福助,電化學基本原理與應用,五洲出版社,(1992),第39頁。
[75] N. Guglielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths”, Journal of Electrochemical Society, 119 (1972) 1009-1012.
[76] 覃奇賢,郭鶴桐,張宏祥,劉淑關,”電鍍原理與工藝”,天津科學技術出版社,1985,第268~270頁。
[77] 覃奇賢,郭鶴桐,張宏祥,劉淑關,”電鍍原理與工藝”,天津科學技術出版社,1985,第272~274頁。
[78] W. McNiell, G. F. Nordbloom, “Method of Making Cadmium Niobate,” US Patent 2854390 (1958).
[79] W. McNiell and L. L. Gruss, “Anodic Spark Reaction Process and Articles,” US Patent 3293158 (1966).
[80] 鐘時俊,Oleg Demine,翁榮洲,”微電弧氧化表面處理原理與應用”,工業材料雜誌,第194期,民國92年2月,第176-180頁。
[81] 襲建軍,辛鐵柱,羅晶,高彩橋,”鋁及鋁合金微弧氧化技術的特點及應用”,航天製造技術,第4期,2002年8月,第44-47頁。
[82] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina and A. Leyland, P. Pilkington and A. Matthews, “Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum”, Journal of Physics D: Applied Physics, 36 (2003) 2110-2120.
[83] 蔣百靈,白力靜,蔣永鋒,張淑芬,”鋁合金微弧氧化技術”,西安理工大學學報,第16卷,第2期,2000年,第138-142頁。
[84] 薛文斌,邓志威,來永春,陳如意,張通和,”有色金屬表面微弧氧化技術評述”,金屬熱處理,第1期,2000年,第1-3頁。
[85] L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, D.O. Misnyankin, A. Pilkington, A. Leyland and A. Matthews, “A Model for Galvanostatic Anodizing of Al in Alkaline Solutions”, Electrochimica Acta, 50 (2005) 5458-5464.
[86] Y.F. Kuang, Z.H. Hou and J.P. Liu, “Development of Electric Breakdown Theory of Anodic Oxidation”, Electroplating and Finishing, 19 (2000) 38-45.
[87]S. Ikonopisov, “Theory of Electrical Breakdown During Formation of Barrier Anodic Films”, Electrochimica Acta, 22 (1977) 1077-1082.
[88] V. Kadary and N. Klein, “Electrical Breakdown I. During the Anodic Growth of Tantalum Pentoxide”, Journal of the Electrochemical Society, 127 (1980) 139-151.
[89] J.M. Albella, I. Montero and J.M. Martinez-Duart, “A Theory of Avalanche Breakdown During Anodic Oxidation”, Electrochimica Acta, 32 (1987) 255-258.
[90] A. Hicking and M. D. Ingram, “Contact Glow-Discharge Electrolysis”, Transactions of the Faraday Society, 60 (1964) 783-793
[91] G. Sundararajan and L. Rama Krishna, “Mechanisms Underlying the Formation of Thick Alumina Coatings Through the MAO Coating Technology”, Surface and Coatings Technology, 167 (2003) 269-277.
[92]石玉龍、茹鳳虎、彭紅端、謝廣文,“鋁材表面的等離子微弧氧化技術研究”,電鍍與塗飾,第19卷,2000年,第15-18頁。
[93]襲建軍、辛鐵柱、羅晶、高彩橋,“鋁及鋁合金微弧氧化技術的特點及應用”,航天製造技術,第4卷,2002年,第44-47頁。
[94]薛文斌、鄧志威、來永春、陳如意、張通和,“有色金屬表面微弧氧化技術評述”,金屬熱處理,第1卷,2000年,第1-3頁。
[95] E. L. Schmeling, B. Roschenbleck, and M. H. Weidemann, “Method of Producing Protective Coatings that are Resistant to Corrosion and Wear on Magnesium and Magnesium alloys” , US Patent 4978432, 1990.
[96] D. E. Bartak, B. E. Lemieux, and E. R. Woolsey, “Two-step Electrochemical Process for Coating Magnesium Alloys”, US Patent 5264113, 1993
[97] http://210.31.64.61/brc_Chinese/MicArc.htm