跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明軒
研究生(外文):Lee, Ming-Hsuan
論文名稱:使用銅網電極製作之可撓式駐極體能量擷取器
論文名稱(外文):Flexible Electret Energy Harvester with Copper Mesh Electrodes
指導教授:邱一
指導教授(外文):Chiu, Yi
口試委員:蘇育全鄭裕庭
口試委員(外文):Su, Yu-ChuanCheng, Yu-Ting
口試日期:2015-04-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:微機電系統能量擷取可撓式駐極體Parylene銅網
外文關鍵詞:MEMSenergy harvesterflexibleelectretParylenecopper mesh
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
能量擷取(Energy harvesting)是從環境中的能量源收集可用的能量來做為低功率元件的電源供應,而藉由微機電系統(MEMS)的製程技術,可將能量擷取系統與低功率元件整合。近年來這些低功率元件也被運用在醫療相關領域中,對於需要植入人體的侵入式裝置,若使用電池做為其能量來源,則會有更換不方便等缺點,故對於這些元件而言,使用能量擷取將比使用電池更加適合。人體為一種能量源,人體運動多為非週期性及隨機的運動,而具有可撓性之能量擷取器可貼附於人體,並從人體運動中收集能量做為低功率負載之電源供應。
本論文提出針對人體運動之靜電式駐極體能量擷取器,為了使裝具有可撓性及生物相容性,本論文使用聚二甲基矽氧烷(PDMS)作為基板,並以Parylene C作為駐極體。在本實驗室先前研究成果中,使用濺鍍方式製作之電極經多次變形後,電極易龜裂而造成裝置壽命降低。本論文使用銅網做為電極,其優點除降低製作成本外,更改善電極可靠度不佳的問題。針對不同應用,本論文共製作兩種不同設計的能量擷取器,其不同之處在於電極間格物,第一種設計使用環狀間格物,可針對人體行走及跑步中收集能量,第二種設計使用圓柱陣列間格物,可從人打字中收集能量。在1000 MΩ的負載及下壓頻率為20 Hz的條件下,產生之輸出功率分別為3.15 μW及2.26 μW,功率密度分別為15 μW/cm3及23 μW/cm3。若將能量擷取器實際用於人體運動,兩種設計在1000 MΩ的負載下,使用手指下壓可產生約300 nW的輸出功率,手指彎曲則約為5 nW。
Energy harvesting is the process of scavenging energy from ambient energy sources in environment to serve as power supply for low-power electronics devices. By Micro-Electro-Mechanical System (MEMS) fabrication technology, energy harvesting system can be integrated with low-power devices. For invasive devices in biomedical applications, batteries are discouraged due to its cost of operations for replacement. Therefore, energy harvesting is more suitable then batteries for low-power devices. Human motion which is usually complicated and aperiodic can be an energy source. Flexible energy harvesters can scavenge energy from human motion by attaching them to human bodies, and power up low-power devices.
In this thesis, electrostatic flexible electret energy harvesters for human motion are proposed. For flexibility and biocompatibility, the substrate was polydimethylsiloxane (PDMS) and Parylene C was used as electret. In our previous work, the sputtered electrode were prone to cracks upon the deformation of the devices, thus limiting the lifetime. To improve the reliability, flexible electret energy harvesters with embedded copper mesh are proposed. In this thesis, two prototypes of energy harvesters have been fabricated. Prototype I has square spacer of rings and is suitable for harvesting energy from walking. Prototype II has arrays of spacer posts and is suitable for harvesting energy from finger typing. The output power for the two prototypes were 3.15 μW and 2.26 μW, corresponding to power density of 15 μW/cm3 and 23 μW/cm3 at test frequency of 20 Hz with a 1000-MΩ load, respectively. In human motion test, the harvester was attached to a human finger. With a 1000-MΩ load, the output power were approximately 300 nW for finger tapping, and 5 nW for finger bending.
中文摘要 i
Abstract ii
致謝 iii
表目錄 vi
圖目錄 vii
第1章 緒論 1
1.1 文獻回顧 2
1.1.1 壓電式 3
1.1.2 靜電式 5
1.1.3 電磁式 7
1.1.4 應用於人體之能量擷取器 10
1.2 論文目標與架構 13
第2章 操作原理及元件設計 15
2.1 靜電式駐極體能量擷取器的操作原理 15
2.2 元件設計 17
2.2.1 機械分析 22
2.2.2 電性分析 25
2.3 總結 33
第3章 元件製作 34
3.1 駐極體之材料及製作 34
3.1.1 駐極體放電實驗 34
3.1.2 駐極體表面電位之討論 37
3.1.3 表面電位長期量測 44
3.2 電極可靠度分析 46
3.3 能量擷取器製程步驟 49
第4章 量測結果 54
4.1 機械特性 54
4.2 下壓實驗 58
4.2.1 改變下壓頻率 59
4.2.2 改變負載電阻 63
4.2.3 駐極體表面電位衰減 64
4.3 彎曲實驗 66
4.3.1 改變彎曲頻率 67
4.3.2 手指下壓及彎曲實驗 70
4.4 結果與討論 73
4.4.1 輸出功率與負載的關係 74
4.4.2 輸出功率與下壓頻率的關係 74
4.4.3 輸出功率與駐極體表面電位的關係 75
4.4.4 輸出功率計算方式 77
4.4.5 能量轉換效率 80
4.5 總結 82
第5章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 84
參考文獻 86

[1] Process-oriented application of energy harvesting technology: Autonomous temperature transmitter, [Online]. Available: http://media.ivam.de/mikrotechnik-10/pdf/22_1130.pdf
[2] H. A. Kloub, “High effectiveness micro electro mechanical capacitive transducer for kinetic energy harvesting.” M.S. Thesis, Department of Microsystems Engineering, University of Freiburg, Germany, 2011.
[3] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan and J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems., vol. 9, no. 1, pp. 64-76 , 2001.
[4] R.J.M. Vullers, R. van Schaijk and I. Doms, C. Van Hoof, R. Mertens, “Micropower Energy Harvesting,” Solid-State Electronics, vol 53, no. 7, pp.684-693, 2009.
[5] A. P#westeur042#rez-Campos, G. F. Iriarte, J. Hernando-Garcia and F. Calle, “Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric micro-cantilevers,” Journal of Micromechanics and Microengineering, vol. 25, no. 2: 025003, 2015.
[6] K. Najafi, T. Galchev, E.E. Aktakka, R.L. Peterson and J. McCullagh, “Microsystem for energy harvesting,” in Proc. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011, pp. 1845-1850.
[7] J. W. Tsai, J. J. Wang, Y. C. Su, “Piezoelectric rubber films for autonomous physiological monitoring systems,” Sensors and Actuators A: Physical, vol. 215, pp. 176-183, 2014.
[8] Q. He, J. Liu, B. Yang, X. Wang, X. Chen and C. Yang, “MEMS-based ultrasonic transducer as the receiver for wireless power supply of the implantable micro-devices,” Sensors and Actuators A: Physical, vol. 219, pp. 65-72, 2014.
[9] Y. Zhu, S. O. R. Moheimani and M. R. Yuce, “A 2-DOF MEMS Ultrasonic Energy Harvester,” IEEE Sensors Journal, vol. 11, no. 1, pp. 155-161, 2011.
[10] I. Kuehne, A. Frey, D. Marinkovic, G. Eckstein and H. Seidel, “Power MEMS-A capacitive vibration-to-electrical energy converter with built-in voltage,” Sensors and Actuators A: Physical, vol. 142, no. 1, p. 263-269, 2008.
[11] C. Lee, Y. M. Lim, B. Yang, R. K. Kotlanka, C. H. Heng, J. H. He, M. Tang, J. Xie and H. Feng, “Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 208-216, 2009.
[12] R. P. Bargayo, “Electret Energy Harvesters Fabricated with Flexible Printed Circuit Boards,” M.S. Thesis, EECS International Graduate Program, National Chiao Tung University, Hsinchu, ROC, 2013.
[13] K. Tao, S. Liu, W. L. Sun, J. Miao and X. Hu, “A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting,” Journal of Micromechanics and Microengineering, vol. 24, no. 6: 065022, 2014.
[14] S. Boisseau, G. Despesse, S. Monfray, O. Puscasu and T. Skotnicki, “Semi-flexible bimetal-based thermal energy harvesters,” Smart Materials and Structures, vol. 22, no. 2: 025021, 2013.
[15] D. P. Arnold, “Review of microscale magnetic power generation,” Magnetics, IEEE Transactions, vol. 43, no. 11, pp. 3940-3951, 2007.
[16] C. T. Pan, Y. J. Chen, Z. H. Liu and C.H. Huang, “Design and fabrication of LTCC electro-magnetic energy harvester for low rotary speed,” Sensors and Actuators A: Physical, vol. 191, pp. 51-60, 2013.
[17] Q. Zhang and E. S. Kim, “Vibration energy harvesting based on magnet and coil arrays for watt-level handheld power source,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1747-1761, 2014.
[18] P. Li, S. Gao and H. Cai, “Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations,” Microsystem Technologies, vol. 21, no. 2, pp. 401-414, 2015.
[19] Y. Qi and M. C. McApine, “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energy &; Environmental Science, vol. 3, no. 9, pp. 1275-1285, 2010.
[20] J. J. H. Paulides, J. W. Jansen, L. Encica, E. A. Lomonova and M. Smit, “Power from the people,” Industry Applications Magazine, IEEE, vol. 17, no. 5, pp. 20-26, 2011.
[21] M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Advanced Materials, vol.24, no. 13, pp. 1759-1764, 2012.
[22] S. H. Wu, “Design, fabrication and measurement of flexible electret energy harvesters,” M.S. Thesis, Department of Electrical Control Engineering, National Chiao Tung University, Hsinchu, ROC, 2013.
[23] A. Zurbuchen, A. Pfenniger, A. Stahel, C. T. Stoeck, S. Vandenberghe, V. M. Koch and Rolf Vogel, “Energy harvesting from the beating heart by a mass imbalance oscillation generator,” Annals of Biomedical Engineering, vol. 41, no. 1, pp. 131-141, 2013.
[24] L. S. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” Solid-State Circuits, vol. 39, no. 12, pp.2446-2456, 2004.
[25] Y. Eun, D. S. Kwon, M. O. Kim, I. Yoo, J. Sim, H. J. Ko, K. H. Cho and J. Kim, “A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion,” Smart Materials and Structures, vol. 23, no. 4: 045040, 2014.
[26] S. Boisseau, G. Despesse, T. Ricart, E. Defay and A. Sylvestre, “Cantilever-based electret energy harvesters,” Smart Materials and Structures, vol. 20, no. 10: 105013, 2011.
[27] Y.C. Lee, Design, “Fabrication and measurement of an out-of-plane vibrational electret micro power generator,” M.S. thesis, Department of Electrical Control Engineering, National Chiao Tung University, Hsinchu, ROC, 2011.
[28] R. Chen and Y. Suzuki, “Suspended electrodes for reducing parasitic capacitance in electret energy harvesters,” Journal of Micromechanics and Microengineering, vol. 23, no. 12: 125015, 2013.
[29] D. H. Choi, C. H. Han, H. D. Kim and J. B. Yoon, “Liquid-based electrostatic energy harvester with high sensitivity to human physical motion,” Smart Materials and Structures, vol. 20, no. 12: 125012, 2011.
[30] T. Starner and J. Paradiso, “Human generated power for mobile electronics,” Low-Power Electronics Design, pp. 1-35, CRC Press, 2004.
[31] P. Stergiopoulos, P. Fuchs and C. Laurgeau, “Design of a 2-finger hand exoskeleton for VR grasping simulation,” in Proc. Eurohaptics, 2003, pp. 80-93.
[32] M. Hosseini, G. Zhu and Y. A. Peter, “A new model of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators,” arXiv preprint arXiv: 0711.3335, 2006.
[33] V. Leonov, P. Fiorini and C. Van Hoof, “Stabilization of positive charge in SiO2/Si3N4 electrets,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 5, pp. 1049-1056, 2006.
[34] W. Kong, L. Cheng, X. He, Z. Xu, X. Ma, Y. He, L. Lu, X. Zhang, Y. Deng, “Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids,” Microfluidics and Nanofluidics, vol. 17, no. 6, pp. 1-9, 2014.
[35] J. M. Elizondo-Decanini and Evan Dudley, “Pulsed High-Voltage Breakdown of Thin-Film Parylene C,” IEEE Transactions on Plasma Science, vol. 39, no. 11, 2011.
[36] Monroe Electronics Electostatic Voltmeter datasheet, [Online]. Available: http://www.monroe-electronics.com/esd_prodpdf/279_ds.pdf.
[37] M. Liu, J. Sun, Q. Chen, “Influences of heating temperature on mechanical properties of polydimethylsiloxane,” Sensors and Actuators A: Physical, vol. 151, no. 1, pp. 42-45, 2009.
[38] V. Leonov, R. Schaijk and C. V. Hoof, “Charge Retention in a Patterned SiO2/Si3N4 Electret,” IEEE Sensors Journal, vol. 13, no. 9, pp. 3369-3376, 2013.
[39] T. K. Kim, J. K. Kim and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” in Proc. Microelectronic Engineering, vol. 88, no. 8, pp. 1982-1985, 2011.
[40] W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Transactions on Electrical Insulation, vol. 27, no. 4, pp. 691-697, 1992.
[41] Y. Fei, Z. Xu and C. Chen, “Charge storage stability of SiO2 film electret,” in Proc. IEEE SoutheastCon, pp. 1-7, 2001.
[42] J. Zhang, X. Zou and Y. Zhang, “Improvement of the performance of the PECVD SiO2/Si3N4 double-layer electrets,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 2, pp. 456-462, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊