|
[1] Process-oriented application of energy harvesting technology: Autonomous temperature transmitter, [Online]. Available: http://media.ivam.de/mikrotechnik-10/pdf/22_1130.pdf [2] H. A. Kloub, “High effectiveness micro electro mechanical capacitive transducer for kinetic energy harvesting.” M.S. Thesis, Department of Microsystems Engineering, University of Freiburg, Germany, 2011. [3] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan and J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems., vol. 9, no. 1, pp. 64-76 , 2001. [4] R.J.M. Vullers, R. van Schaijk and I. Doms, C. Van Hoof, R. Mertens, “Micropower Energy Harvesting,” Solid-State Electronics, vol 53, no. 7, pp.684-693, 2009. [5] A. P#westeur042#rez-Campos, G. F. Iriarte, J. Hernando-Garcia and F. Calle, “Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric micro-cantilevers,” Journal of Micromechanics and Microengineering, vol. 25, no. 2: 025003, 2015. [6] K. Najafi, T. Galchev, E.E. Aktakka, R.L. Peterson and J. McCullagh, “Microsystem for energy harvesting,” in Proc. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011, pp. 1845-1850. [7] J. W. Tsai, J. J. Wang, Y. C. Su, “Piezoelectric rubber films for autonomous physiological monitoring systems,” Sensors and Actuators A: Physical, vol. 215, pp. 176-183, 2014. [8] Q. He, J. Liu, B. Yang, X. Wang, X. Chen and C. Yang, “MEMS-based ultrasonic transducer as the receiver for wireless power supply of the implantable micro-devices,” Sensors and Actuators A: Physical, vol. 219, pp. 65-72, 2014. [9] Y. Zhu, S. O. R. Moheimani and M. R. Yuce, “A 2-DOF MEMS Ultrasonic Energy Harvester,” IEEE Sensors Journal, vol. 11, no. 1, pp. 155-161, 2011. [10] I. Kuehne, A. Frey, D. Marinkovic, G. Eckstein and H. Seidel, “Power MEMS-A capacitive vibration-to-electrical energy converter with built-in voltage,” Sensors and Actuators A: Physical, vol. 142, no. 1, p. 263-269, 2008. [11] C. Lee, Y. M. Lim, B. Yang, R. K. Kotlanka, C. H. Heng, J. H. He, M. Tang, J. Xie and H. Feng, “Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 208-216, 2009. [12] R. P. Bargayo, “Electret Energy Harvesters Fabricated with Flexible Printed Circuit Boards,” M.S. Thesis, EECS International Graduate Program, National Chiao Tung University, Hsinchu, ROC, 2013. [13] K. Tao, S. Liu, W. L. Sun, J. Miao and X. Hu, “A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting,” Journal of Micromechanics and Microengineering, vol. 24, no. 6: 065022, 2014. [14] S. Boisseau, G. Despesse, S. Monfray, O. Puscasu and T. Skotnicki, “Semi-flexible bimetal-based thermal energy harvesters,” Smart Materials and Structures, vol. 22, no. 2: 025021, 2013. [15] D. P. Arnold, “Review of microscale magnetic power generation,” Magnetics, IEEE Transactions, vol. 43, no. 11, pp. 3940-3951, 2007. [16] C. T. Pan, Y. J. Chen, Z. H. Liu and C.H. Huang, “Design and fabrication of LTCC electro-magnetic energy harvester for low rotary speed,” Sensors and Actuators A: Physical, vol. 191, pp. 51-60, 2013. [17] Q. Zhang and E. S. Kim, “Vibration energy harvesting based on magnet and coil arrays for watt-level handheld power source,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1747-1761, 2014. [18] P. Li, S. Gao and H. Cai, “Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations,” Microsystem Technologies, vol. 21, no. 2, pp. 401-414, 2015. [19] Y. Qi and M. C. McApine, “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energy &; Environmental Science, vol. 3, no. 9, pp. 1275-1285, 2010. [20] J. J. H. Paulides, J. W. Jansen, L. Encica, E. A. Lomonova and M. Smit, “Power from the people,” Industry Applications Magazine, IEEE, vol. 17, no. 5, pp. 20-26, 2011. [21] M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Advanced Materials, vol.24, no. 13, pp. 1759-1764, 2012. [22] S. H. Wu, “Design, fabrication and measurement of flexible electret energy harvesters,” M.S. Thesis, Department of Electrical Control Engineering, National Chiao Tung University, Hsinchu, ROC, 2013. [23] A. Zurbuchen, A. Pfenniger, A. Stahel, C. T. Stoeck, S. Vandenberghe, V. M. Koch and Rolf Vogel, “Energy harvesting from the beating heart by a mass imbalance oscillation generator,” Annals of Biomedical Engineering, vol. 41, no. 1, pp. 131-141, 2013. [24] L. S. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” Solid-State Circuits, vol. 39, no. 12, pp.2446-2456, 2004. [25] Y. Eun, D. S. Kwon, M. O. Kim, I. Yoo, J. Sim, H. J. Ko, K. H. Cho and J. Kim, “A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion,” Smart Materials and Structures, vol. 23, no. 4: 045040, 2014. [26] S. Boisseau, G. Despesse, T. Ricart, E. Defay and A. Sylvestre, “Cantilever-based electret energy harvesters,” Smart Materials and Structures, vol. 20, no. 10: 105013, 2011. [27] Y.C. Lee, Design, “Fabrication and measurement of an out-of-plane vibrational electret micro power generator,” M.S. thesis, Department of Electrical Control Engineering, National Chiao Tung University, Hsinchu, ROC, 2011. [28] R. Chen and Y. Suzuki, “Suspended electrodes for reducing parasitic capacitance in electret energy harvesters,” Journal of Micromechanics and Microengineering, vol. 23, no. 12: 125015, 2013. [29] D. H. Choi, C. H. Han, H. D. Kim and J. B. Yoon, “Liquid-based electrostatic energy harvester with high sensitivity to human physical motion,” Smart Materials and Structures, vol. 20, no. 12: 125012, 2011. [30] T. Starner and J. Paradiso, “Human generated power for mobile electronics,” Low-Power Electronics Design, pp. 1-35, CRC Press, 2004. [31] P. Stergiopoulos, P. Fuchs and C. Laurgeau, “Design of a 2-finger hand exoskeleton for VR grasping simulation,” in Proc. Eurohaptics, 2003, pp. 80-93. [32] M. Hosseini, G. Zhu and Y. A. Peter, “A new model of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators,” arXiv preprint arXiv: 0711.3335, 2006. [33] V. Leonov, P. Fiorini and C. Van Hoof, “Stabilization of positive charge in SiO2/Si3N4 electrets,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 5, pp. 1049-1056, 2006. [34] W. Kong, L. Cheng, X. He, Z. Xu, X. Ma, Y. He, L. Lu, X. Zhang, Y. Deng, “Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids,” Microfluidics and Nanofluidics, vol. 17, no. 6, pp. 1-9, 2014. [35] J. M. Elizondo-Decanini and Evan Dudley, “Pulsed High-Voltage Breakdown of Thin-Film Parylene C,” IEEE Transactions on Plasma Science, vol. 39, no. 11, 2011. [36] Monroe Electronics Electostatic Voltmeter datasheet, [Online]. Available: http://www.monroe-electronics.com/esd_prodpdf/279_ds.pdf. [37] M. Liu, J. Sun, Q. Chen, “Influences of heating temperature on mechanical properties of polydimethylsiloxane,” Sensors and Actuators A: Physical, vol. 151, no. 1, pp. 42-45, 2009. [38] V. Leonov, R. Schaijk and C. V. Hoof, “Charge Retention in a Patterned SiO2/Si3N4 Electret,” IEEE Sensors Journal, vol. 13, no. 9, pp. 3369-3376, 2013. [39] T. K. Kim, J. K. Kim and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” in Proc. Microelectronic Engineering, vol. 88, no. 8, pp. 1982-1985, 2011. [40] W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Transactions on Electrical Insulation, vol. 27, no. 4, pp. 691-697, 1992. [41] Y. Fei, Z. Xu and C. Chen, “Charge storage stability of SiO2 film electret,” in Proc. IEEE SoutheastCon, pp. 1-7, 2001. [42] J. Zhang, X. Zou and Y. Zhang, “Improvement of the performance of the PECVD SiO2/Si3N4 double-layer electrets,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 2, pp. 456-462, 2011.
|