跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘歆韻
研究生(外文):Shin-Yun Pan
論文名稱:探討滴雞精副產物之酵素水解物對抗疲勞能力及風味表現之影響
論文名稱(外文):Anti-fatigue activities and sensory characteristics of enzymatic hydrolysate from drip chicken essence by-product
指導教授:林亮全
指導教授(外文):Liang-Chuan Lin
口試委員:吳勇初賴坤明
口試委員(外文):Yun-Chu WuKung-Ming Lai
口試日期:2018-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:124
中文關鍵詞:滴雞精副產物蛋白質水解抗疲勞梅納反應
外文關鍵詞:Drip chicken essenceBy-productProtein hydrolysisAnti-fatigueMaillard reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:930
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來,滴雞精產品逐漸受到消費者喜愛,隨著滴雞精生產量日益增加,滴雞精萃取副產物也隨之增加。先前之試驗結果顯示,寡產雞滴雞精之製成率約為35%,而剩餘之雞肉渣副產物約佔65%,但雞肉渣副產物至今仍無有效之利用方法。因此,本試驗以研究寡產雞滴雞精副產物之利用為目的,利用酵素水解滴雞精肉渣,探討水解產物對於小鼠之抗疲勞效果,及水解產生之胜肽及梅納反應產物之風味表現,以期有效利用滴雞精副產物並提升其經濟價值。試驗一利用三種蛋白酶(A, B, C)水解滴雞精肉渣,以正交試驗法篩選最適合之水解酵素及條件(1.5% 酵素C、60℃、pH 6.0、水解2小時),並進行動物試驗分析其抗疲勞效力。動物試驗使用40隻6週齡ICR公鼠,隨機分成5組,分別為控制組(蒸餾水)、肉渣萃取液組(未經酵素水解)及低(0.96 g/kg)、中(1.92 g/kg)、高(4.8 g/kg)劑量水解液組,連續餵給28天,進行力竭游泳等抗疲勞試驗,並分析肝臟肝醣含量及血液生化值,以觀察其抗疲勞之效果。結果顯示,餵給水解液之處理組游泳時間皆顯著較控制組及肉渣萃取液組長,其中又以高濃度組有最佳之表現(P < 0.05),而30秒肌耐力及前肢拉力試驗也顯示相似之結果。血液生化值方面,游泳後控制組及肉渣萃取液組之血糖顯著低於處理組,水解液處理組能夠有效抑制運動後血乳酸、血尿素氮及磷酸肌酸激酶之累積(P < 0.05)。補充水解液之組別亦有顯著較高之肝臟肝醣儲存量,以避免運動時低血糖引發疲勞(P < 0.05)。由上述結果可知,餵給水解液可顯著減緩疲勞之產生且提升小鼠之運動表現,並且不會對其造成負面影響。試驗二利用三種蛋白酶(D, E, F)水解滴雞精肉渣,並分析各組之製成率、水解率、胜肽含量及可溶性蛋白含量,篩選適合之條件並進行梅納反應,比較其感官品評之表現並分析游離胺基酸成份。結果顯示,酵素水解處理能夠顯著提升製成率及胜肽含量(P < 0.05),其中以酵素F之製成率及水解率最高。感官品評方面,則是酵素D之水解產物經梅納反應處理後有最佳表現,並且游離胺基酸分析結果顯示,梅納反應有減少苦味胺基酸及增加麩胺酸(Glu)含量之趨勢,減少水解產物之苦味並提升鮮味,適合進一步研發成風味物質使用。綜觀上述結果,可知滴雞精副產物經酵素水解後具有抗疲勞效果,並且其梅納反應產物能有效提升感官品質,未來可進一步開發成抗疲勞健康食品以及風味物質,以提升滴雞精副產物之經濟價值。
For these past few years, drip chicken essence has been more popular among the consumers. The increased profit gain has also stimulated the production. This has also produced more by-products in account to higher production of drip chicken essence. The previous study shows that the production rate of drip chicken essence from spent hens is about 35 %. In other words, the rest of meat residues account for 65 %.But the industry has yet to find a way to efficiently utilize the meat residues. The aim of the study is to clarify the anti-fatigue effect of drip chicken essence by-product hydrolysate, in hope to increase the value of the by-product of drip chicken essence. In the first study, chicken meat residues were hydrolyzed with three protease (enzyme A, enzyme B, enzyme C). Effects of hydrolysis conditions were studied through orthogonal experiment, and optimization hydrolysis conditions were obtained.The hydrolysate were used to evaluate anti-fatigue effect and probable mechanisms. Forty 6-week-old male ICR mice were randomly divided into five groups of eight mice each: a control group given distilled water, a meat extract group without enzymatic hydrolysis and low-dose(0.96 g/kg), medium-dose(1.92 g/kg), high-dose(4.8 g/kg) meat residue hydrolysate groups. Samples were administered by gastric intubation using a feeding atraumatic needle, once per day for 28 consecutive days. The average swimming time, hepatic glycogen and biochemical parameters were measured. Compared with the control group, all of the meat residue hydrolysate groups, especially the high-dose treatment prolonged the swimming time of mice (P < 0.05). The 30 seconds muscle endurance score and the tensile force test showed the similar result with the swimming test. After swimming, the blood glucose and hepatic glycogen of control group and meat extract group were significantly lower than meat residue hydrolysate groups (P < 0.05).The blood lactic acid, blood urea nitrogen and creatine phosphokinase concentration of control group were significantly higher than meat residue hydrolysate groups (P < 0.05). In the second study, chicken meat residues were hydrolyzed with three protease (enzyme D, enzyme E, enzyme F). The Yield, degree of hydrolysis, peptide concentration, soluble protein concentration and sensory evaluation of meat residue hydrolysate were determined. The optimization hydrolysis conditions were obtained to prepare protein hydrolysate and Maillard reaction products. In summary, protein hydrolysis could remarkably increase the yield and peptide concentration of meat residue (P < 0.05), especially the hydrolysate group of enzyme F. The Maillard reaction exhibited a distinctly enhanced effect on flavor and a greatly reduced bitterness. The sensory evaluation of Maillard reaction products prepared from hydrolysate of enzyme D exhibited the strongest umami tastes . As for overall acceptance, Maillard reaction products of enzyme D hydrolysate was better than other treatments.Conclusively, meat residue hydrolysate could alleviate physical fatigue without negative effects, and the Maillard reaction products could improve the flavor performance.
壹、 中文摘要 i
貳、 英文摘要 iii
參、 前言 1
肆、 文獻探討 2
一、 滴雞精副產物簡介 2
二、 蛋白質水解 2
(一) 蛋白酵素之分類 3
(二) 影響酵素反應之主要因素 5
(三) 蛋白酵素水解物之功能性與應用 7
(四) 副產物之水解 14
三、 健康食品 18
(一) 定義及法規 18
(二) 健康食品分類及查驗登記 18
(三) 健康食品產業現況 19
四、 抗疲勞 20
(一) 生理疲勞類型與機制 21
(二) 健康食品抗疲勞評估方法 26
(三) 蛋白質水解胜肽與抗疲勞 27
五、 蛋白質水解產物之風味及梅納反應 28
(一) 胺基酸及胜肽於五種基本味覺之表現 29
(二) 梅納反應 33
伍、 試驗一-材料與方法 37
一、 試驗材料 39
二、 一般組成分析 39
(一) 乾物質 39
(二) 灰分 40
(三) 粗蛋白 40
(四) 粗脂肪 41
三、 水解物製備 42
四、 水解產物分析 43
(一) 製成率 43
(二) 水解率 43
(三) 胜肽含量 44
(四) 可溶性蛋白含量 45
(五) 正交試驗設計法 45
(六) 水解試驗分組 46
五、 動物試驗 46
(一) 試驗動物簡介 46
(二) 試驗動物來源與飼養條件 47
(三) 動物試驗分組 47
(四) 抗疲勞試驗 48
(五) 體重、採食量、飲水量 49
(六) 血液生化值分析 50
(七) 組織分析 50
六、 統計方法 53
陸、 試驗一-結果與討論 54
一、 一般組成分析 54
二、 水解產物分析 55
(一) 正交試驗 55
(二) 胜肽含量 61
(三) 製成率 63
(四) 水解率 65
(五) 抗疲勞水解產物篩選 67
三、 動物試驗 68
(一) 抗疲勞試驗 68
(二) 小鼠體增重變化 74
(三) 血液生化值分析 76
(四) 組織分析 88
柒、 試驗二-材料與方法 94
一、 試驗材料 95
二、 水解物製備及分析 95
三、 試驗分組 95
四、 梅納反應 95
五、 游離胺基酸分析 96
六、 感官品評 96
七、 統計方法 96
捌、 試驗二-結果與討論 97
一、 製成率 97
二、 水解率 99
三、 胜肽含量 101
四、 可溶性蛋白含量 103
五、 感官品評 105
六、 游離胺基酸分析 109
玖、 結論 112
壹拾、參考文獻 113
林正常。2011。運動生理學。師大書苑有限公司。
何國慶、丁立孝,丁立孝。2007。食品酵素學。五南出版社。
健康食品管理法。中華民國八十八年二月三日。
衛署食字第0920401629號。2003。健康食品抗疲勞評估方法。
張迪鈞。2017。探討國產寡產雞製成之滴雞精對不同年齡(青少年期、壯年期、老年期)及性別之小鼠抗疲勞之效果。碩士論文。國立中興大學動物科學系研究所。台中。
林佑哲。2012。豬肝酵素水解物抑制飲食誘導肥胖大鼠採食量與體增重之研究。
碩士論文。國立中興大學動物科學系研究所。台中。
衛生福利部食品藥物管理署。
https://www.fda.gov.tw/TC/index.aspx
Association of Official Analytical Chemists (AOAC) International. 2002. Official methods of analysis of AOAC international. 17th ed, Arlington, Virginia, USA.
Achouri, A., W. Zhang and X. Shiying. 1999. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Res. Int. 31: 617–623.
Adler-Nissen, J. 1986. Enzymic hydrolysis of food protein. Elsevier Applied Science Publishers, New York, USA.
Aoyama, T., K. Fukui, T. Nakamori, Y. Hashimoto, T. Yamamoto and K. Takamatsu. 2000. Effect of soy and milk whey protein isolates and their hydrolysates on weight reduction in genetically obese mice. Biosci Biotechnol Biochem. 64: 2594-2600.
Arihara, K., Y. Nakashima, T. Mukai, S. Ishikawa and M. Itoh. 2001. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci. 57: 319-324.
Aoife, L., Y. C. O’Callaghan and N. M. O’Brien. 2013. Protein hydrolysates from agricultural crops—bioactivity and potential for functional food development. Agriculture. 3(1): 112-130.
Bergström, J. and E. Hultman. 1996. Muscle glycogen synthesis after exercise: An enhancing factor localized to the muscle cells in man. Nature. 210: 309–310.
Bigland-Ritchie, B., F. Furbush and J. Woods. 1986. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J. Appl. Physiol. 61:421-429.
Barca, A., R. Ruiz-Salazar and M. Jara-Marini. 2000. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties. J. Food Sci. 65: 246–253.
Bougatef, A., N. Nedjar-Arroume, L. Manni, R. Ravallec, A. Barkia, D. Guillochon and M. Nasri. 2010. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry. 118: 559–565.
Borrelli, R. C., A. Visconti, C. Mennella, M. Anese and V. Fogliano. 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry. 50: 6527–6533.
Chan, W. M. and C. Y. Ma. 1999. Acid modification of proteins from soymilk residue (okara). Food Res. Int. 32: 119–127.
Calbet, J. A. L. and D. A. MacLean. 2002. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 132: 2174–2182.
Castro, B. and S. Kuang. 2017. Evaluation of muscle performance in mice by treadmill exhaustion test and whole-limb grip strength assay. Bio Protoc. 7(8): e2237.
Chang, Y. Q. 2004. Study on anti-fatigue effect of corn-peptide. Food Sci. 25(9): 173–178.
Chen, Y. Y., Y. H. Shi and G.W. Le. 2008. Connection between anti-fatigue and anti-oxidation activity of soybean oligopeptides with different molecular weight. Amino Acids Biotic Resour. 30(2): 59-62.
Cheng , F. Y., T. C. Wan, Y. T. Liu, C. M. Chen, L. C. Lin and R. Sakata. 2009. Determination of angiotensin-I converting enzyme inhibitory peptides in chicken leg bone protein hydrolysate with alcalase. Anim Sci J. 80(1): 91-97.
Cui, C., X. Zhou, M. Zhou and B. Yang. 2009. Effect of thermal treatment on the enzymatic hydrolysis of chicken proteins. Innovative Food Science and Emerging Technologies. 10: 37-41.
Chobert, J. M., C. Bertrand-Harb and M. G. Nicolas. 1988. Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. J. Agric. Food Chem. 36: 883–892.
Cho, Y., S. Park, H. J. Shin, K. H. Jang, S. A. Kang and R. Y. Choue. 2001. Comparative estrogenic effects of Yak-kong and Soy bean on the proliferation of human osteoblastic cell line. J. Nutr. 34: 905-911.
Crowe, K. M. and C. 2013. Francis.Position of the academy of nutrition and dietetics: functional foods. Journal of the Academy of Nutrition and Dietetics. 113(8): 1096-1103.
Cooper, J. R., F. E. Bloom and R. H. Roth. The biochemical basis of neuropharmacology. 8th ed. New York: Oxford University Press, 2003.
Dave, S., N. J. Kaur, R. Nanduri, H. K. Dkhar, A. Kumar and P. Gupta. 2012. Inhibition of adipogenesis and induction of apoptosis and lipolysis by Stem Bromelain in 3T3-L1 adipocytes. PLoS One. 7(1): e30831.
Dashty, M. 2013. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 46(15): 1339-1352.
Daoud, R., V. Dubois, L. Bors-Dodita, N. Nedjar-Arroume, F. Krier, N. E. Chihib, P. Mary, M. Kouach, G. Briand and D. Guillochon. 2005. New antibacterial peptide derived from bovine hemoglobin. Peptides. 26(5): 713-719.
Dall-Aaslyng, M. M. M., , L. Poll, , P. Munk-Nielsen, H. Flyge and L. Melchior-Larsen. 1998. Chemical and sensory characterization of hydrolyzed vegetable. Journal of Agricultural Food Chemistry. 46(2): 481–489.
Di Bernardini, R., P. Harnedy, D. Bolton, J. Kerry, E. O'Neill, A. M. Mullen and M. Hayes. 2011. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chemistry. 124(4): 1296-1307.
Di Pasquale, M. G. 1997. Amino Acids and Proteins for the Athlete: The Anabolic Edge; CRC Press: Boca Raton, FL, USA, 1997.
Frestedt, J. L., J. L. Zenk, M. A. Kuskowski, L. S. Ward and E. D. Bastian. 2008. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr Metab. 5: 1173-1186.
Fernstrom, J.D. 1983. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev. 63(2): 484-546.
Fitts, R. H. 1994. Cellular mechanisms of muscle fatigue. Physiological Reviews. 74: 49–94.
Grimble, G.; Keohane, P.; Higgins, B.; Kaminski, M., Jr.; Silk, D. Effect of peptide chain length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clin. Sci. 1986, 71, 65–69.
Harper, W., R. Boer, P. Jelen and Z. Puhan. 1992. Functional properties of whey protein concentrates and their relationship to ultrafiltration. Journal of Dairy Science. 82: 265-271.
Ikekawa, T., H. Maruyama, T. Miyano, A. Okura and K. Shiratori. 1985. Proflamun, a new antitumor agent: preparation, physicochemical properties and antitumor activity. J. Cencer Res. 76(2): 142-148.
Jia, J., H. Ma, W. Zhao, Z. Wang, W. Tian, L. Luo and R. He. 2010. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 119: 336–342.
Johnson, L. N. 2009. The regulation of protein phosphorylation. Biochem. 37: 627-641.
Katayama, K., M. Tomatsu, H. Fuchu, M. Sugiyama, S. Kawahara, K. Yamauchi, Y. Kawamura and M. Muguruma. 2003. Purification and characterization of an angiotensin I-converting enzyme inhibitory peptide derived from porcine troponin C. Anim. Sci.74: 53-58.
Karlsson, J. and B. Saltin. 1971. Diet, muscle glycogen and endurance performance. Journal of Applied Physiology. 31: 203-206.
Keller, U. J. 2011. Dietary proteins in obesity and in diabetes. International Journal of Vitamins and Nutrition Research. 81: 125-133.
Kim, H. J., Y. B. In, C. W. Ahn, S. Lee and H. G. Lee. 2007. Purification and identification of adipogenesis inhibitory peptide from black soybean protein hydrolysate. Peptides. 28(11): 2098-2103.
Koikawa, N., A. Nakamura, I. Ngaoka, K. Aoki, K. Sawaki and Y. Suzuki. 2009. Delayed-onset muscle injury and its modification by wheat gluten hydrolysate. Nutrition. 25: 493–498.
Lafarga, T. and M. Hayes. 2014. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Science. 98(2): 227-239.
Sakamoto, H., Y. Kumazawa, S. Toiguchi, K. Seguro, T. Soeda and M. Motoki. 2006. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. Food Sci. 60: 300–304.
Shallenberger, R. S. and T. E. Acree. 1967. Molecular theory of sweet taste. Nature. 216: 480-482.
Sielaff, H. 1996. Functional properties of bovine blood plasma intended for use as a functional ingredient in human food. LWT- Food Sci Technol. 36(5): 709–718.
Sun, S., H. Niu, T. Yang, Q. Lin, F. Luo, and M. Ma. 2014. Antioxidant and anti-fatigue activities of egg white peptides prepared by pepsin digestion. Journal of the science of food and agriculture. 94(15): 3195-3200.
Song, N., T. Chen, P. Liu, X. Zhang, S. Xia, and C. Jia. 2013. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates. Food Chemistry. 136(1): 144-151.
Souza, K. M. R., R. B. Araujo, A. L. Santos, C. E. C. Rodrigues, D. E. Faria and M. A. Trindade. 2011. Adding value to the meat of spent laying hens manufacturing sausages with a healthy appeal. Brazilian Journal of Poultry Science. 13(1): 57-63.
Spellman, D., E. McEvoy, G. O’Cuinn and R. J. FitzGerald. 2003. Proteinase and exopeptidase hydrolysis of whey protein: comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal. 13(6): 447-453.
Sangtherapitikul, O., Y. C. Chen and T. C. Chen. 2005. Utilization of spent hens as a flavoring base: 1. preparation and characteristics of spent hen meat enzymatic hydrolysate. Journal of Food Technology. 3(1): 46-53.
Schlichtherle, C. and H. A. Renato. 2002. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten. Journal of Agricultural and Food Chemistry. 50(6): 1515–1522.
Fujita, H., K. Yokoyam and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65: 564-569.
FitzGerald, R. J. and G. O’Cuinn. 2005. Enzymatic debittering of food protein hydrolysates. Biotechnology Advances. 24(2): 234-237.
Fennema, Owen R. Food chemistry. Marcel Dekker, New York, USA. Frokjaer, S. Use of hydrolysates for protein supplementation. Food Technol. 1994, 48, 86–88.
Lan, X. H., P. Liu, S. Q. Xia, C. S. Jia, D. Mukunzi and X. M. Zhang. 2010. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry. 120 (4): 967-972.
Léger, L. W. and S. D. Arntfield. 1993. Thermal gelation of the 12S canola globulin. J. Am. Oil Chem. 70: 853–861.
Li, C.H., T. Matsui, K. Matsumoto, R. Yamasaki and T. Kawasaki. 2002. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. J. Pept. Sci. 8: 267–274.
Liceaga‐Gesualdo, A. M. and E.C.Y. Li‐Chan. 2006. Functional properties of fish protein hydrolysate from herring (clupea harengus). Journal of Food Science. 64(6): 1000-1004.
Li, Q., Y. Wang and G. 2015. Antifatigue activity of liquid cultured Tricholoma matsutake mycelium partially via regulation of antioxidant pathway in mouse. BioMed.
Liu, P., M. Huang, S. Song, K. Hayat, X. Zhang, S. Xia, and C. Jia. 2012. Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food and Bioprocess Technology. 5: 1775-1789.
Lin, Y. J., G. W. Le, J. Y. Wang, Y. X. Li, Y. H. Shi, and J. Sun. 2010. Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. International Journal of Molecular Sciences. 11(11): 4297-4308.
Matsui, T., L. ChunHui, T. Tanaka, T. Maki, Y. Osajima and K. Matsumoto. 2000. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol. Pharmaceut. Bull. 23: 427–431.
Maehashi, K., M. Matsuzaki, Y. Yamamoto and S. Udaka. 1999. Isolation of peptides from an enzymatic hydrolysate of food proteins and characterization of their taste properties. Biosci Biotechnol. Biochem. 63(3): 555-559.
Maughan, R. J . 2000. Volume of the encyclopadia of sports medicine. Nutrition in Sport. Oxford: Blackwell Science.
Maclaren, D. P., H. Gibson, M. Parry-Billings and R. H. Edwards. 1989. A review of metabolic and physiological factor in fatigue. Exercise and Sports Science Reviews.17: 29-66.
Martin, B., Y. Shi and C. White. 2010. Vasoactive intestinal peptidenull mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes. 59(5): 1143-1152.
Meeusen, R., P. Watson, H. Hasegawa and B. Roelands. 2006. Central fatigue. Sports Medicine. 36(10): 881–909.
Naz, S. 2007. Enzymes and food. Oxford, New York, USA.
Nakashima, Y., K. Arihara, A. Sasaki, H. Mio, S. Ishikaa and M. Itoh. 2002. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J. Food Sci. 67: 434-437.
Olfert, E.D. 1983. The biology and medicine of rabbits and rodents. Can J Comp Med. 47(4): 515.
Ogasawara, M., T. Katsumata, and M. Egi. 2006. Taste properties of Maillard-reaction products prepared from 1000 to 5000 Da peptide. Journal of food chemistry. 99(3): 600-604.
Pan, D., Y. Guo, and X. Jiang. 2009. Anti-fatigue and antioxidative activities of peptides isolated from milk proteins. Journal of food biochemistry. 35(4): 1130-1144.
Peña-Ramos, E. A., and Y. L. Xiong. 2001. Antioxidative Activity of Whey Protein Hydrolysates in a Liposomal System. Journal of dairy science. 84(12): 2577-2583.
Peña-Ramos, E.A. and Y. Xiong. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. J. Food Sci. 67: 2952–2956.
Peña-Ramos, E.A. and Y. Xiong. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 64: 259–263.
Phanturat, P., S. Benjakul, W. Visessanguan and S. Roytrakul. 2010. Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT - Food Science and Technology. 43: 86–97.
Rees, B. B., P. Boily and L. A.Williamson. 2009. Exercise- and hypoxia-induced anaerobic metabolism and recovery: a student laboratory exercise using teleost fish. Adv Physiol Educ. 33(1): 72–77.
Tanaka, M., Y. Baba and Y. Kataoka. 2008. Effects of epigallocatechin gallate in liver of an animal model of combined (physicalandmental) fatigue. Nutrition. 24(6): 599-603.
Tang, C. H., J. Peng, D. W. Zhen and Z. Chen. 2009. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem. 115: 672–678.
Tamanna1, N. and N. Mahmood. 2015. Food processing and Maillard reaction products: effect on human health and nutrition. International Journal of Food Science.
Tamura, M., T. Nakatsuka, T. Makoto, K. Yoshihiro, K. Eiichi and O. Hideo. 1989. The relationship between taste and primary structure of "delicious peptide" (Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) from beef soup. Agricultural and Biological Chemistry. 53(2): 319-325.
Teng, J. E., D. R. Moore, G. W. Kujbida, M. A. Tarnopolsky and S. M.Phillips. 2009. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol.107: 987–992.
Torreggiani, A., M. Di Foggia, I. Manco, A. De Maio, S. A. Markarian and S. Bonora. 2008. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study. Journal of Molecular Structure.
Tucker, Gregory A., Woods, L.F.J. 1995. Enzymes in food processing. Blackie Academic & Professional, UK.
Tuttle, J .L., J. A. Potteiger, B.W. Evans and J. C. Ozmun. 1995. Effect of acute potassium-magnesium as part ate supplementation of ammonia concentrations during and after resistance training. International Journal of Sport Nutrition. 5: 102-109.
Turner, A. J. and N. M. Hooper. 2002. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol. Sci. 23: 177-183.
Van Loon, L.J.C., W.H.M. Saris, M. Kruijshoop and A.J.M. Wagenmakers. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am. J. Clin. Nutr. 72: 106–111.
Vioque, J., R. Sánchez-Vioque, A. Clemente, J. Pedroche and F. Millán. 2000. Partially hydrolyzed rapeseed protein isolates with improved functional properties. J. Am. Oil Chem. Soc. 77: 447–450.
Wang, H.T., H. X.Yin, H. Z. Jin and J. M. He. 2007. The study of antifatigue effects of sea cucumber polypeptide on mice. Food Mach. 23(3): 89–91.
Westerblad, H., D. B. Josep and A. Katz. 2010. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research. 316(18): 3093-3099.
Xue, Z., W. Yu, Z. Liu, M.Wu, X. Kou and J. Wang. 2009. Preparation and antioxidative properties of a rapeseed (Brassica napus) protein hydrolysate and three peptide fractions. J. Agric. Food Chem. 57: 5287–5293.
Yee, J., W. Shipe, J. Kinsella. 1980. Antioxidant effects of soy protein hydrolysates on copper catalyzed methyl linoleate oxidation. Food Sci. 45: 1082–1083.
Yun, J. W. 2010. Possible anti-obesity therapeutics from nature – A review. Phytochemistry. 71: 1625-1641.
Yoshie-Stark, Y., Y. Wada and A.Wäsche. 2008. Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chem. 107: 32–39.
Zhang, Y., X. B. Yao, B. L. Bao and Y. Zhang. 2009. Anti-fatigue activity of a triterpenoid-rich extract from Chinese bamboo shavings (Caulis bamfusae in taeniam). Phytother Res. 20: 872–876.
Zhang, S.B., Z. Wang and S. Y. Xu. 2008. Antioxidant and antithrombotic activities of rapeseed peptides. J. Am. Oil Chem. Soc. 85: 521–527.
Zhang, X. L., F. Ren, W. Huang, R. T. Ding, Q. S. Zhou, and X. W. Liu. 2010. Anti-fatigue activity of extracts of stem bark from Acanthopanax senticosus. Journal of molecules. 16(1): 28-37.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top