REFERENCES
[1] C. H. Chang and K. W. Han, “Gain-margin and phase-margin analysis of a nuclear reactor control system with multiple transport lags,” IEEE Trans. Nuclear Science, Vol.36, No.4, pp.1418-1424, 1989.
[2] C. S. Tao, C. H. Chang and K. W. Han, “Gain-margins and phase-margins for multivariable controls systems with adjustable parameters,” Int. J. Contr., Vol.54, No.2, pp.435-452, 1991.
[3] G. H. Lii, C. H. Chang and K. W. Han, “Analysis of robust control systems using stability-equations,” J. Control Systems and Technology, R.O.C., Vol.1, No.1, pp.83-89, 1993.
[4] C. H. Chang, “The physical meanings of gain margins and phase margins of mimo systems,” research report, E.E. Dept. Chung-Cheng Institute of Technology, 1989.
[5] D. D. Šiljak, Nonlinear Systems: The Parameter Analysis and Design. New York: Wiley, 1969.
[6] C. H. Chang and K. W. Han, “Gain-margins and phase-margins for control systems with adjustable parameters,” AIAA J. Guidance, Vol. 13, No.3, pp.404-408, 1990.
[7] A. T. Shenton and Z. Shafiei, “Relative stability for control systems with adjustable parameters,” AIAA J. Guidance Control and Dynamics, Vol. 17, No. 2, pp.304-310, 1994.
[8] G. L. Chao, J. W. Perng and K. W. Han, “Robust stability analysis of time-delay systems using parameter-plane and parameter-space methods,” J. Franklin Institute, Vol. 335B, No.7, pp. 1249-1262, 1998.
[9] I. Postlethwaite, J. M. Edmunds and G. J. MacFarlane, “Principal gains and principal phases in the analysis of linear multivariable feedback systems,” IEEE Trans. Automat. Contr., Vol. AC-26, No. 1, pp.32-46, 1981.
[10] G. M. Schoen and H. P. Geering, “Stability condition for a delay differential system,” Int. J. Contr., Vol. 58, No. 1, pp.247-252, 1993.
[11] J. H. Su, “The asymptotic stability of linear autonomous systems with commensurate time delays,” IEEE Trans. Automat. Contr., Vol. 40, No. 6, pp.1114-1117, 1995.
[12] T. N. Lee and S. Dianat, “Stability of time-delay systems,” IEEE Trans. Automat. Contr., Vol. AC-26, No. 4, pp.951-953, 1981.
[13] N. A. Lehtomaki, N. R. Sandell, and Jr. M. Athans, “Robustness results in linear-quadratic gaussian based multivariable control designs,” IEEE Trans. Automat. Contr., Vol. AC-26, No. 1, pp.75-92, 1981.
[14] C. Zhang and M. Fu, “A revisit to the gain and phase-margins of linear quadratic regulators,” IEEE Trans. Automat. Contr., Vol. 41, No. 10, pp.1527-1530, 1996.
[15] 羅基福,含時滯之多輸入多輸出系統的增益邊際和相位邊際分析,元智大學電研所,民國87年。[16] 楊忠山,強健設計的一些實用方法研究,元智大學電研所,民國87年。[17] 李錫棋,鋼板滾壓控制系統之控制器設計,元智大學電研所,民國87年。[18] V. Besson and A. T. Shenton, “Interactive control systems design by a mixed H-parameter space method,” IEEE Trans. Automat. Contr., Vol. 42, No. 7, pp.946-955, 1997.
[19] V. Besson and A. T. Shenton, “An interactive parameter space method for robust performance in mixed sensitivity problems,” IEEE Trans. Automat. Contr., Vol. 44, No. 6, pp.1272-1276, 1999.
[20] I. Egaña and M. García-Sanz, “Quantitative non-diagonal MIMO controller design for uncertain systems,” International Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods, pp. 187-198, 1999.
[21] J. Kocijan, J. O’Reilly and W. E. Leithead, “An integrated undergraduate teaching laboratory approach to multivariable control,” IEEE Trans. Education, Vol. 40, No.4, pp.266-272, 1997.
[22] J. M. Maciejowski, Multivariable Feedback Design. Great Britain: T. J. Press, Cornwall, 1993.
[23] B. A. Francis, A Course in H Theory. New York: Springer-Verlag, 1987.
[24] J. C. Doyle, B. A. Francis, and A. Tannenbaum, Feedback Control Theory. New York: Macmillan, 1992.
[25] G. Zames and B. A. Francis, “Feedback, minimax sensitivity, and optimal robustness,” IEEE Trans. Automat. Contr., Vol. AC-28, pp.585-600, 1983.
[26] P. A. Iglesias and K. Glover, “State-space approach to discrete-time H control,” Int. J. Contr., Vol. 54, No. 5, pp. 1031-1073, 1991.
[27] T. Chai, K. Mao and X. Qin, “Decoupling design of multivariable generalised predictive control,” IEE Proc.-Control Theory Appl., Vol. 141, No. 3, pp.197-201, 1994.
[28] R. Ortega and A. Herrera, “A Solution to the continuous-time adaptive decoupling problem,” IEEE Trans. Automat. Contr., Vol. 39, No. 8, 1994.
[29] 葉芳柏、楊憲東,後現代控制理論與設計,修訂版。台北狀元出版社,民國81年。
[30] 葉芳柏、楊憲東,線性與非線性H控制理論,初版一刷。台北全華圖書,民國86年。
[31] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, µ-Analysis and Synthesis Toolbox. Natick, MA: The MathWorks, 1991.
[32] Y. R. Chiang and M. G. Safonov, Robust Control Toolbox. Natick, MA: The MathWorks, 1992.
[33] M. G. Safonov and R. Y. Chiang, “ CACSD using the state-space L theory A design example,” Proc. IEEE Conf. CACSD, Contr., AC-33, No. 5, pp. 477-479, 1988.
[34] Y. S. Hung and B. Pokrud, “An H approach to feedback design with two objective functions,” IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 820-824, 1992.
[35] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard H2 and H control problems,” IEEE Trans. Automat. Contr., Vol. 34, No. 8, pp. 831-847, 1989.
[36] A. T. Shenton, “Parameter partition of these term control systems,” Dept. Mechanical Eng., Univ. Liverpool, MES/ATS/INT/013/95, Nov. 1995.
[37] W. J. Johnston, Analytical Geometry. London: Clarendon, 1893.