|
Aitken A.C. (1926) On Bernoulli’s numerical solution of algebraic equations. ProcR Soc Edinburgh 46:289–305 Azzalini, A. (2014) The Skew-Normal and Related Families. IMS Monographs series, Cambridge University Press, UK. Baek, J., McLachlan, G.J. (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics 27:1269–1276. Baek, J., McLachlan, G.J., Flack, L.K. (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data. IEEE Trans. Patt. Anal. Mach. Intell. 32:1–13. Barndorff-Nielsen, O., Shephard, N. (2001) Non-Gaussian Ornstein-Uhlenbeckbased models and some of their uses in financial economics. J. Roy. Statist. Soc. Ser. B 63:167–241. Beal, M.J. (2003) Variational Algorithms for Approximate Bayesian Inference (Ph.D. thesis), The University of London, London, UK. Biernacki, C., Celeux, G. Govaert, G. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Patt. Anal. Mach. Intell. 22:719–725. Charytanowicz, M., Niewczas J., Kulczycki, P., Kowalski, P., Lukasik, S., Zak, S. (2010) A complete gradient clustering algorithm for features analysis of X-ray images, in: E. Pietka, J. Kawa (Eds.), Information Technologies in Biomedicine, Springer, Berlin, pp. 15–24. Chen, X., Cheung, S.T., So, S., Fan, S.T., Barry, C., Higgins, J., Lai, K.M., Ji, J., Dudoit, S., Ng, I.O., Van De Rijn, M., Botstein, D., Brown, P.O. (2002) Gene expression patterns in human liver cancers. Molecular Biology of the Cell 13: 1929–1939. Dempster, A.P., Laird, N.M., Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Royal Stat. Soc. B 9:1–38. Ghahramani, Z., Hinton, G.E. (1997) The EM algorithm for factor analyzers, Technical Report No. CRG-TR-96-1. The University of Toronto: Toronto. Ghahramani, Z., Beal, M. (2000) Variational inference for Bayesian mixture of factor analysers. In: Solla, S., Leen, T., Muller, K.-R (Eds.), Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge, pp. 449–455. Hartigan, J.A., Wong, M.A. (1979) Algorithm AS 136: A K-means clustering algorithm. J. Royal Stat. Soc. C, 28:100–108. Hubert, L.J., Arabie, P. (1985) Comparing partitions. Journal of Classification 2:193–218. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K. (1999) An introduction to variational methods for graphical models. Mach Learn 37:183–233. Lee, W.L., Chen, Y.C., Hsieh, K.S. (2003) Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans. Med. Imaging 22:382–392. Lee, Y.W., Poon, S.H. (2011) Systemic and systematic factors for loan portfolio loss distribution. Econometrics and applied economics workshops pp. 1–61. School of Social Science, University of Manchester. Lin, T.I. (2014) Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition. Comput. Statist. Data Anal. 71:183–195. Lin, T.I., McLachlan, G.J., Lee, S.X. (2016) Extending mixtures of factor models using the restricted multivariate skew-normal distribution. J. Multivar. Ana. 143:398–413. Lin, T.I., Wu, P.H., McLachlan, G.J., Lee, S.X. (2015) A robust factor analysis model using the restricted skew-t distribution. TEST 24:510–531. Liu, C., Rubin, D.B. (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81:33–648. McLachlan, G.J., Basford, K.E. (1988) Mixture models: inference and application to clustering. Marcel Dekker, New York. McLachlan, G.J.,Krishnan, T. (2008) The EM algorithm and extensions, 2nd edition. John Wiley and Sons, New York. McLachlan, G.J., Peel, D. (2000) Finite Mixture Models. Wiley, New York. McNicholas, P.D., Murphy, T.B. (2008) Parsimonious Gaussian mixture models. Statist. Comp. 18:285–296. McNicholas, P.D., Murphy, T.B., McDaid, A.F., Frost, D. (2010) Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Comput. Stat. Data Anal. 54:711–723. Meng, X.L., Rubin, D.B. (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278. Murray, P.M., Browne, R.P., McNicholas, P.D. (2014a) Mixtures of skew-t factor analyzers. Comput. Stat. Data Anal. 77:326–335. Murray, P.M., McNicholas, P.D., Browne, R.P. (2014b) Mixtures of common skew-t factor analyzers. Stat 3:68–82. Ouyang, M., Welsh, W., Georgopoulos, P. (2015) Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20:917–923. Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.I., Maier, L.M., Baecher-Allan, C., McLachlan, G.J., Tamayo, P., Hafler, D.A., De Jager, P.L., Mesirov, J.P. (2009) Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA, 106:8519–8524. Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist. 6:461–464. Subedi, S., McNicholas, P.D. (2014) Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions. Adv. Data Anal. Classif. 8:167–193. Teschendorff, A., Wang, Y., Barbosa-Morais, N., Brenton, J., Caldas, C. (2005) A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 21:3025–3033. Tortora, C., McNicholas, P., Browne, R. (2015) A mixture of generalized hyperbolic factor analyzers. Adv. Data Anal. Classif. DOI 10.1007/s11634-015-0204-z. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E. (2000) SMEM algorithm for mixture models. Neural Computation 12:2109–2128. Wang, W.L. (2013) Mixtures of common factor analyzers for high-dimensional data with missing information. J. Multivar. Anal. 117:120–133. Wang, W.L. (2015) Mixtures of common t-factor analyzers for modeling highdimensional data with missing values. Comput. Statist. Data Anal. 83:223–235. Waterhouse, S., MacKay, D., Robinson, T. (1996) Bayesian methods for mixture of experts. In: Advances in neural information processing systems, vol 8. MIT Press, Cambridge.
|