跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明憲
研究生(外文):LIN MING-HSIEN
論文名稱:以化學氣相沉積法成長奈米碳線圈及奈米碳管之研究
論文名稱(外文):Synthesis of carbon nanotube and carbon nanocoil with catalytical pyrolysis and thermal chemical vapor deposition
指導教授:劉益銘
指導教授(外文):LIU YIH-MING
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:奈米碳管奈米碳線圈
外文關鍵詞:Nanotube Nanocoil
相關次數:
  • 被引用被引用:6
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學氣相沉積法(TCVD, Thermal Chemical Vapor Deposition)成長奈米碳螺旋線圈及奈米碳管,並以場發射掃描式電子顯微鏡、高解析度穿透式電子顯微鏡、化學分析光電子分光儀、拉曼光譜分析儀、真空場發射量測儀等儀器對其進行分析,進而針對兩者之製程參數及結構形態進行探討。
針對奈米碳螺旋線圈製程之研究,本研究證實藉由降低「非均溫縫隙化學析鍍法」中鍍液之pH酸鹼值,以提升Ni-P合金觸媒中P含量,可成長出不同螺旋形態(麻花或彈簧形態)之奈米碳螺旋線圈。此外,並發現利用「化學均溫置換法」單獨置換Pd金屬觸媒,亦可大量成長螺旋形態均勻之奈米碳螺旋線圈,其線圈外徑約108.4 nm,纖維內徑約95.5 nm,結構形態屬於實心螺旋結構之碳纖維,成長模式為二維方向螺旋成長模式。
在奈米碳管製程方面,本研究以MgO基材蒸鍍Ni觸媒10 nm於TCVD系統成長奈米碳管,經實驗發現,製程溫度800 ℃,C2H2/H2流量比例10/40,通氫前處理時間30 min,為大面積成長高準直性奈米碳管之最佳製程條件,其碳管垂直成長高度可達24.8±2.2 μm,並由HR-TEM觀察得知,碳管具有明顯之中空管狀結構,而管壁為石墨層平行排列結構,層數約8~12層。此外,奈米碳管亦有良好之場發射效應,所獲得之開啟電場為3.1 V/μm。
The synthesis of carbon nanocoils (CNCs) and carbon nanotubes (CNTs) using thermal chemical vapor deposition (TCVD) and C2H2/H2 as gas sources is studied in this thesis. The morphology and emission properties of both carbonaceous nano-products were observed and characterized using Field-Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), Electron Spectroscopy for Chemical Analysis, Raman Spectroscopy, and I-V curve measurements.
The results indicate that, for the growth of carbon nanocoils (CNCs), the content of phosphorus in Ni-P alloy catalysts increased when the pH value of the plating solution decreased, and we can control the coil morphology (twist-shaped or spring-like) of grown CNCs by adjusting the pH value of the plating solution. Moreover, we also found that CNCs with uniform single-helix structure can be synthesized in large scale by TCVD using galvanic displacement deposited Pd particles as catalysts. These CNCs have a twisting shape and were composed of coiled carbon nanofibers. The mean coil diameter was around 108.4 nm and the mean fiber diameter was around 95.5 nm, Their growth belonged to 2-directional helical growth.
For the growth of carbon nanotubes (CNTs), multi-wall CNTs (MCNTs) were grown on MgO substrates by TCVD process using an evaporated Ni layer (10 nm) as a catalyst. The result shows that, at the growth temperature of 800 ˚C , C2H2/H2 ratio of 10/40 (sccm) and pre-annealed under H2 ambience for 30 minutes, we can grow well-aligned MCNTs in large scale. The length of 24.8±2.2 μm of these MCNTs was achieved. HRTEM observation revealed that these MCNTs have a tubular structure whose tube-wall was composed of 8 to 12 layers of parallel graphene. Besides, The I-V curve measurement showed that they have good field emission property with a turn-on voltage (for a current density of 0.01mA) of 3.1 V/μm.
誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
符號說明
1. 緒論
1.1 前言
1.2 研究動機與目的
2. 文獻回顧及發展簡介
2.1 奈米碳管簡介
2.1.1 奈米碳管的結構
2.1.2奈米碳管的成長機制
2.2 奈米碳管的特殊性質及應用
2.2.1 機械特性
2.2.2 電性
2.2.3 熱穩定性、熱導性及熱膨脹性
2.2.4 場發射特性
2.2.5 應用前景
2.3 奈米碳管製備方法
2.3.1 電弧放電法(Arc Discharged Method)
2.3.2 雷射蒸發法(Laser Vaporization Method)
2.3.3化學氣相沉積法(Chemical Vapor Deposition)
2.4 氧化鎂基材對成長奈米碳管之作用
2.5 奈米碳螺旋線圈發展簡介
2.6 奈米碳螺旋線圈製備方法
2.6.1 基體法
2.6.2 噴淋法
2.6.3 流動催化法
2.7 奈米碳螺旋線圈的成長機制與應用
2.7.1 奈米碳螺旋線圈的成長機制
2.7.2應用前景
2.8觸媒製備方法
2.8.1 物理法
2.8.2 化學法
3. 研究方法與設備
3.1 研究流程
3.2 研究方法
3.2.1 基板製備
3.2.2 觸媒製備
3.2.3 化學氣相沉積法合成奈米碳螺旋線圈及奈米碳管
3.3 研究設備
3.3.1 非均溫縫隙化學析鍍裝置
3.3.2 化學均溫置換裝置
3.3.3 蒸鍍設備
3.3.4 化學氣相沉積設備
3.3.5 檢測分析儀器
4. 結果與討論
4.1以化學氣相沉積法成長奈米碳螺旋線圈
4.1.1觸媒對於奈米碳螺旋線圈成長之影響
4.1.1.1不同pH酸鹼值之Ni-P合金觸媒對於奈米碳螺旋線圈成長之影響
4.1.1.2 Ni-P/Pd共觸媒對於奈米碳螺旋線圈成長之影響
4.1.1.3置換Pd金屬觸媒對於奈米碳螺旋線圈成長之影響
4.1.2通氫前處理時間對於奈米碳螺旋線圈成長之影響
4.1.3製程溫度對於奈米碳螺旋線圈成長之影響
4.1.4奈米碳螺旋線圈微觀與結構之分析
4.1.5小結
4.2以單晶氧化鎂材料蒸鍍鎳觸媒成長高品質奈米碳管
4.2.1製程溫度對於奈米碳管成長之影響
4.2.2不同氣體流量比例對於奈米碳管成長之影響
4.2.3通氫前處理時間對於奈米碳管成長之影響
4.2.4奈米碳管之微觀結構及場發射效能分析
4.2.5小結
5. 結論
參考文獻
自傳
[1] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第1.2-1.10頁,2006。
[2] Motojima, S., Noda, Y., Hoshiya, Y., and Hishikawa, Y., “Electromagnetic Wave Absorption Property of Carbon Microcoils in 12-110 GHz Region,” Journal of Applied Physics, Vol. 94, No. 4, p. 2325, 2003.
[3] 陳韋達,“緩衝層與覆蓋層材料於奈米碳管成長機制之探討”,碩士學位論文,國防大學中正理工學院應用化學研究所,桃園,第65-73頁,2007。
[4] Xiong, G. Y., Wang, D. Z., and Ren, Z. F., “Aligned Millimeter - Long Carbon Nanotube Arrays Grown on Single Crystal Magnesia,” Carbon, Vol. 44, pp. 969-973, 2006.
[5] Kroto, H. W., Allaf, A. W., and Balm, S. P., “C60:Buckminster Fullerene,” Chemical Reviews, Vol. 91, pp. 1213-1235, 1991.
[6] Krätschmer, W., “Fullerenes and Fullerites: New Forms of Carbon,” Nanostr- uctured Materials, Vol. 6, pp. 65-72, 1995.
[7] Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 7, pp. 56-58, 1991.
[8] 王翰韜,“以化學氣相沉積法低溫製備奈米碳管之研究”,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第6-7頁,2005。
[9] Grobert, N., “Carbon Nanotubes - Becoming Clean,” JAN-FEB 2007, Vol. 10, pp. 28-35, 2007.
[10] Dresselhaus, M. S., Dresselhaus, G., and Saito, R., “Physics of Carbon Nano- tubes,” Carbon, Vol. 33, pp. 883, 1995.
[11] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第5.12-5.16頁,2006。
[12] Yacaman, M. J., Yoshida, M. M., and Rendon, L., “Catalytic Growth of Carbon Microtubules with Fullerene Structure,” Applied Physics Letters, Vol. 62, pp. 202, 1993.
[13] Baker, R. T. K., Braber, M. A., and Harries, P. S., “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed,” Journal of Catalysis, Vol. 26, pp. 51-62, 1972.
[14] Cheol, J. L., and Seung, C. L., “Diameter-Controlled Growth of Carbon Nano- tubes Using Thermal CVD,” Chemical Physics Letters, Vol. 341, pp. 245-249, 2000.
[15] 張朝清,“在矽基板上以熱裂解法成長奈米碳管的研究”,碩士學位論文,私立中原大學應用物理研究所,桃園,第42頁,2003。
[16] Daenen, M., de Fouw, R. D., Hamers, B., Janssen, P. G. A., Schouteden, K., and Veld, M. A. J., “The Wondrous World of Carbon Nanotubes,” Eindhoven University of Technology, pp. 8-9, 2003.
[17] Sinnot, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., and Derbyshire, F., “Model of Carbon Nanotube Growth through Chemical Vapor Deposition,” Chemical Physics Letters, Vol. 315, pp. 25-30, 1999.
[18] Gorbunov, A., Josta, O., Pompe, W., and Graff, A., “Solid-Liquid-Solid Growth Mechanism of Single-Wall Carbon Nanotubes,” Carbon, Vol. 40, pp. 113-118, 2002.
[19] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第36-42頁,2004。
[20] http://www.anp.com.tw/main02-a1.htm.
[21] Yakobson, B. I., Brabec, C. J., and Bernholc, J., “Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,” Physical Review Letters, Vol. 76, No. 14, pp. 2511-2514, 1996.
[22] Ngo, Q., Cassell, A. M., Radmilovic, V., Li, J., Krishnan, S., Meyyappan, M., and Yang, C. Y., “Palladium Catalyzed Formation of Carbon Nanofibers by Plasma Enhanced Chemical Vapor Deposition,” Carbon, Vol. 45, pp. 424-428, 2007.
[23] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第5.17-5.21頁,2006。
[24] Berber, S., Kwon, Y. K., and Tománek, D., “Unusually High Thermal Conducti- vity of Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 20, pp. 4613- 4616, 2000.
[25] Ivanov, I., Puretzky, A., Eres, G., Wang, H., Pan, Z., Cui, H., Jin, R., Howe J., and Geohegan, D. B., “Fast and Highly Anisotropic Thermal Transport through Vertically Aligned Carbon Nanotube Arrays,” Applied Physics Letters, Vol. 89, pp. 223110, 2006.
[26] Guo, P. S., Sun, Z., Chen, Y. W., and Zheng, Z. H., “A Novel Approach to Mass Synthesis of Raw CNTs for Printed Field Emission Cathodes by Chemical Vapour Deposition,” Materials Letters, Vol. 60, pp. 966-969, 2006.
[27] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第43頁,2004。
[28] Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, Ph., “Single and Multi-Wall Carbon Nanotube Field-Effect Transistors,” Applied Physics Letters, Vol. 73, pp. 2447-2449, 1998.
[29] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華科技圖書股份有限公司,台北,第3.57-3.65頁,2003。
[30] Cui, S., Scharff, P., Siegmund, C., Schneider, D., Risch, K., Klotzer, S., Spiess, L., Romanus, H., and Schawohl, J., “Investigation on Preparation of Multiwalled Carbon Nanotubes by DC Arc Discharge under N2 Atmosphere,” Carbon, Vol. 42, pp. 931-939, 2004.
[31] Noriaki, S., “Formation of Multi-Shelled Carbon Nanoparticles by Arc Dis- charge in Liquid Benzene,” Materials Chemistry and Physics, Vol. 88, pp. 235-238, 2004.
[32] Kim, H. H., and Kim, H. J., “The Preparation of Carbon Nanotubes by DC Arc Discharge Using a Carbon Cathode Coated with Catalyst,” Materials Science and Engineering B, Vol. 130, pp. 73-80, 2006.
[33] Kim, H. H., and Kim, H. J., “Preparation of Carbon Nanotubes by DC Arc Discharge Process under Reduced Pressure in an Air Atmosphere,” Materials Science and Engineering B, Vol. 133, pp. 241-244, 2006.
[34] Zhu, S., Su, C. H., Cochrane, J. C., Lehoczky, S., Muntele, I., and Ila, D., “Growth of Carbon Nanostructure Materials Using Laser Vaporization,” Diamond and Related Materials, Vol. 10, pp. 1190-1194, 2001.
[35] Wang, W.H., Chao, K.M., and Kuo, C.T., “Process and Characteristics of The Large Area Well-Aligned CNTs with Open Ends by Electron Cyclotron Resonance Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 14, pp. 753-757, 2005.
[36] Deck, C. P., and Vecchio, K., “Growth Mechanism of Vapor Phase CVD- Grown Multi-Walled Carbon Nanotubes,” Carbon, Vol. 43, pp. 2608-2617, 2005.
[37] Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., and Park, J. W., “Growth of Carbon Nanotubes by Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 10, pp. 1235-1240, 2001.
[38] 陳品文,“以均溫置換法製備鐵、鈷與鎳觸媒成長奈米碳管及SiO2緩衝層對奈米碳管成長之影響”,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第11頁,2007。
[39] Yasui, K., Tsuruma R., Takata, M., and Akahane, T., “Application to Piezo- resistive Sensor of SiCOI Structure Fabricated by Triode Plasma CVD,” AZojomo Journal of Materials Online, Vol. 2, pp. 1-7, 2006.
[40] Wang, W. H., Peng, Y. R., and Kuo, C. T., “Effects of Buffer Layer Materials and Process Conditions on Growth Mechanisms of Forming Networks of SWNTs by Microwave Plasma Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 14, pp. 1906-1910, 2005.
[41] Hsua, C. M., Linb, C. H., Laia, H. J., and Kuo, C. T., “Root Growth of Multi-Wall Carbon Nanotubes by MPCVD,” Thin Solid Films, Vol. 471, pp. 140-144, 2005.
[42] Flahaut, E., Peigney, A., Laurent, Ch., and Rousset, A., “Synthesis of Single- Walled Carbon Nanotube-Co-MgO Composite Powders and Extraction of the Nanotubes,” Journal of Materials Chemistry, Vol. 10, pp. 249-252, 2000.
[43] Colomer, J. F., Stephan, C., Lefrant, S., Tendeloo, G. V., Willems, I., Ko´nya, Z., Fonseca, A., Laurent, Ch., and Nagy, J. B., “Large-Scale Synthesis of Single-Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD) Method,” Chemical Physics Letters, Vol. 317, pp. 83-89, 2000.
[44] Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., “Growth of Regularly Coiled Carbon Filaments by Ni Catalyzed Pyrolysis of Acetylene, and their Morphology and Extension Characteristics,” Applied Physics Letters, Vol. 56, pp. 321-323, 1990.
[45] Hayashida, T., Pan, L., and Nakayama, Y., “Mechanical and Electrical Properties of Carbon Tubule Nanocoils,” Physica B, 3 Vol. 23, pp. 352-353, 2002.
[46] Lau, K. T., Lu M., and Hui, D., “Coiled Carbon Nanotubes:Synthesis and their Potential Applications in Advanced Composite Structures,” Composites: Part B, Vol. 37, pp. 437-448, 2006.
[47] Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., “Effect of Metal Impurities on the Growth of Micro-Coiled Carbon Fibres by Pyrolysis of Acetylene,” Materials Science and Engineering B, Vol. 34, pp. 9-11, 1995.
[48] Yang, S., Chen, X., and Motojima, S., “Morphology of Zigzag Carbon Nano- fibers Prepared by Catalytic Pyrolysis of Acetylene Using Fe-Group Containing Alloy Catalysts,” Diamond and Related Materials, Vol. 13, pp. 85-92, 2004.
[49] Yang, S., Chen, X., Motojima, S., and Ichihara, M., “Morphology and Micros- tructure of Spring-Like Carbon Microcoils/Nanocoils Prepared by Catalytic Pyrolysis of Acetylene Using Fe-Containing Alloy Catalysts,” Carbon, Vol. 43, pp. 827-834, 2005.
[50] Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., “Catalytic Effects of Metal Carbides, Oxides and Ni Single Crystal on the Vapor Growth of Micro-Coiled Carbon Fibers,” Carbon, Vol. 34, No. 3, pp. 289-296, 1996.
[51] Ding, D. Y., Wang, J. N., Cao, Z. L., Dai, J. H., and Yu, F., “Ni-Ni3P Alloy Catalyst for Carbon Nanostructures,” Chemical Physics Letters , Vol. 371, pp. 333-336, 2003.
[52] Chen, X., and Motojima, S., “The Growth Patterns and Morphologies of Carbon Micro-Coils Produced by Chemical Vapor Deposition,” Carbon, Vol. 37, pp. 1817-1823, 1999.
[53] Chen, X., Yang, S., Motojima, S., and Ichihara, M., “Morphology and Microstr- ucture of Twisting Nano-Ribbons Prepared Using Sputter-Coated Fe-Base Alloy Catalysts on Glass Substrates,” Materials Letters, Vol. 59, pp. 854-858, 2005.
[54] Pana, L., Hayashidaa, T., Haradab, A., and Nakayama, Y., “Effects of Iron and Indium Tin Oxide on the Growth of Carbon Tubule Nanocoils,” Physica B, Vol. 323, pp. 350-351, 2002.
[55] Chen, X., Yang, S., Kato, Y., and Motojima, S., “Influence of CVD Conditions on the Growth of Carbon Microcoils with Circular Cross-Sections,” Materials Letters, Vol. 61, pp. 2900-2903, 2007.
[56] Yang, S., Ozeki, I., Chen, X., Katsuno, T., and Motojima, S., “Preparation of Single-Helix Carbon Microcoils by Catalytic CVD Process,” Thin Solid Films, Vol. 516, pp. 718-721, 2008.
[57] 成會明、張勁燕,奈米碳管,五南圖書出版公司,台北,第575-582頁,2004。
[58] 沈曾民,新型碳材料,材料科學與工程出版中心,北京,第158-170頁,2003。
[59] Wen, Y., and Shen, Z., “Synthesis of Regular Coiled Carbon Nanotubes by Ni-Catalyzed Pyrolysis of Acetylene and a Growth Mechanism Analysis,” Carbon, Vol. 39, pp. 2369-2386, 2001.
[60] Pan, L., Zhang, M., and Nakayama Y., “Growth Mechanism of Carbon Nano- Coils,” Journal Applied Physics, Vol. 91, No. 12, pp. 10058-10061, 2002.
[61] Chen, X., Motojima, S., and Iwanga, H., “Vapor Phase Preparation of Super- Elastic Carbon Micro-Coils,” Journal of Crystal Growth, Vol. 237-239, pp. 1931-1936, 2002.
[62] Chen, X., Motojima, S., and Iwanga, H., “Carbon Coatings on Carbon Micro- Coils by Pyrolysis of Methane and their Properties,” Carbon, Vol. 37, pp. 1825-1831, 1999.
[63] Lee, C. J., Park, J., Kim, J. M., Huh, Y., Lee, J. Y., and No, K. S., “Low- Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Pd, Cr, and Pt as Co-Catalyst,” Chemical Physics Letters, Vol. 327, pp. 277-283, 2000.
[64] Reyhani, A., Mortazavi, S. Z., Akhavan, O., Moshfegh, A. Z., and Lahooti, Sh., “Effect of Ni, Pd and Ni–Pd Nano-Islands on Morphology and Structure of Multi-Wall Carbon Nanotubes,” Applied Surface Science, Vol. 253, pp. 8458-8462, 2007.
[65] Liu, Y. Mi, Sung, Y., Chen, T. T., Wang, H. T., and Ger, M. D., “Low Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Non-Isothermal Deposited Ni–P–Pd as Co-Catalyst,” Materials Chemistry and Physics, Vol. 106, pp. 399-405, 2007.
[66] Lee, S. Y., Yamada, M., and Miyake, M., “Synthesis of Carbon Nanotubes and Carbon Nanofilaments over Palladium Supported Catalysts,” Science and Technology of Advanced Materials, Vol. 6, pp. 420-426, 2005.
[67] 陳品文,“以均溫置換法製備鐵、鈷與鎳觸媒成長奈米碳管及SiO2緩衝層對奈米碳管成長之影響” ,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第12-19頁,2007。
[68] 姜曉霞,化學鍍理論及實踐,國防工業出版社,北京,第12-20頁,2000。
[69] Chen, T. T., Liu, Y. M., Sung, Y., Wang, H. T., and Ger, M. D., “Experimental Investigation on Carbon Nanotube Grown by Thermal Chemical Vapor Deposition Using Non-Isothermal Deposited Catalysts,” Materials Chemistry and Physics, Vol. 97, pp. 511-516, 2006.
[70] 王翰韜,“以化學氣相沉積法低溫製備奈米碳管之研究”,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第57-62頁,2005。
[71] 陳品文,“以均溫置換法製備鐵、鈷與鎳觸媒成長奈米碳管及SiO2緩衝層對奈米碳管成長之影響” ,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第32-35頁,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 焦興鎧(2013)。美國最高法院對工作場所性騷擾爭議之最新判決:Crawford v. Nashville 一案之評析。歐美研究,43(2),256-304。
2. 蔣駿(2013)。透視校園性侵害及性騷擾事件處理之團體盲思。中華行政學報,12,103-121。
3. 李淑菁(2010)。校園霸凌、性霸凌與性騷擾之概念釐清與討論。社區發展季刊,130,120-129。
4. 龔尚智、吳其昌(2000),「以新上市公司樣本探討店頭市場開放信用交易對其股價波動性及效率性之影響」,輔仁管理評論,第7卷第1期,161-181。
5. 鄧瀛培、劉亞秋、薛立言(2012),「2008年金融風暴台股限制放空價格對市場穩定及從眾程度影響之研究」,臺灣企業績效學刊,第6卷第1期,79-107。
6. 詹司如、林靖中、郭玟秀(2008),「平盤以下可融券賣出對股票價格行為之影響」,經濟與管理論叢,第4卷第2期,203-228。
7. 張眾卓、鄭揚耀、王明昌、蔡宜靜(2014)「放空價格限制對市場品質之影響」,證券市場發展季刊,第26卷第1期,147-182。
8. 許凱翔、胡吳岳、黃志仁(2013)「融券賣出對星期效應及反轉星期效應的影響」,創新與經營管理學刊,第4卷第2期,69 - 79。
9. 陳達新、陳君達、賴智民(2007),「開放信用交易對台股股票報酬、波動性與週轉率之影響」,經濟與管理論叢,第3卷第1期,97-124。
10. 陳益璋、張瑞真 (2007),「融券放空政策對台灣50指數波動性影響--GARCH模型應用」,遠東學報,第24卷第4期,315-330。
11. 姚海青、杜化宇、陳勝源(1999),「我國股票市場融資比率與融券保證金成數調整對股價與股價波動性影響之研究」,證券市場發展季刊,第11卷第2期, 129-154。
12. 吳如萍(2013),「開放中型100指數成分股平盤以下放空限制對股價行為之影響」,環球科技人文學刊,第16期,15-32 。