跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亭卉
研究生(外文):Ting-Huei Chen
論文名稱:金屬雙極板流道結構對質子交換膜燃料電池性能之研究
論文名稱(外文):The studies of flow channels on the metallic bipolar plate for the performance of PEMFC
指導教授:洪榮崇
指導教授(外文):Jung-Chung Hung
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:燃料電池質子交換膜燃料電池金屬雙極板
外文關鍵詞:Fuel CellProton Exchange Membrane Fuel Cellmetallic bipolar plate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
目前常用石墨雙極板,其材質強度低、硬脆不易加工,無法加工極微細的流道與肋。由於雙極板的流道結構會直接影響燃料電池性能。因此本研究,以厚度1mm的S316L不銹鋼板為雙極板材料,利用微放電加工技術,製作流道反應面積20mm×20mm、寬度與深度為0.8mm,肋的寬度分別為0.2mm、0.4mm、0.6mm(開口率為 85.36%、70.24%、58.19%)的金屬雙極板。並利用製作完成的金屬雙極板與MEA組裝電池,進行電池性能量測試實驗,探討流道與肋寬度的幾何尺寸對於質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC)性能特性的影響。
研究結果顯示,雙極板流道肋的寬度為0.4mm時,燃料電池的性能最佳。當電壓為0.499V時,其電流密度較0.6mm提升34.21%。而肋寬度0.2mm的雙極板燃料與MEA的反應面積雖最大,但過大的開口率反而造成電子傳導的有效面積減少,使電池內電阻增加,所以電池性能低於0.4mm。另一方面,陽極氣體流量會影響電池效能,當流量在60cc/min時,三組流道都有較佳的電池性能。當流量在增加至80cc/min時,則對電池性能影響不大,因流量在60cc/min就有足夠燃料讓電池反應。當流量40cc/min時,雙極板肋寬度0.6mm與0.4mm燃料電池因流道短,造成燃料不足,使電池產生明顯濃度極化現象;而肋雙極板肋寬度0.2mm的燃料電池因其流道長度比肋寬度0.6mm與0.4mm長,燃料在流道內有足夠的時間反應,所以燃料使用率較佳。

Nowadays, ultra fine channels and ribs cannot be formed on the commonly used graphite bipolar plates owing to low strength and brittleness of the graphite material. Therefore, this study used the stainless steel plate, SUS316L, with 1mm thick stainless, as the material of the bipolar plates, and these metallic bipolar plates are with reaction area of 20mm×20mm, height and depth of 0.8mm and ribs widths of 0.2mm, 0.4mm and 0.6mm respectively (open area rate of 85.36%, 70.24%, 58.19%,respectively). These formed metallic bipolar plates were assembled with MEA and subsequent cell performance experiments were performed to discussed the affections between the dimensions of the ribs and the channels and the performance of the proton exchange membrane fuel cell (PEMFC).
The experimental results show that the metallic bipolar plate with ribs width of 0.4 mm has the optimum cell performance. The current density of the fuel cell with the metallic bipolar plate with rib width of 0.4 mm was 34.21% higher than the current density of the fuel cell with the metallic bipolar plate with rib width of 0.6mm while the voltage was 0.499V. Although, the metallic bipolar plate with 0.2mm rib width comprising the largest reaction area between fuel and MEA, the excessive open area rate reduced the effective electron transmitting, and increased internal resistance. Therefore, the performance of the metallic bipolar plate with 0.2 mm rib width is lower than the one with 0.4 mm rib width. On the other hand, the flow rate of the gas also affects the performance of the cells. When the flow rate of the gas was set at 60cc/min, better cell performances were found in all of the three cells with different rib and channel dimensions of the metallic bipolar plates. There were no significant performance differences between these three fuel cells when the flow rate of the gas was increased to 80cc/min because sufficient fuel was supplied for reaction when the flow rate was at 60cc/min. When the flow rate of the gas was set at 40cc/min, concentration polarization occurred in the fuel cells with bipolar plates with 0.6 and 0.4 mm ribs width owing to the short channel length with insufficient fuel flow. Better performance was found in the fuel cell with bipolar plate with 0.2mm rib width because of the longer length of the channel and the sufficient time for reaction.

中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 微放電加工之介紹 3
1.3 文獻回顧 5
1.4 研究目的 11
1.5 研究方法 13
1.6 論文總覽 14
第二章 燃料電池介紹 15
2.1 燃料電池的原理 15
2.2 燃料電池的種類 17
2.3 質子交換膜燃料電池的特點 21
2.4 燃料電池的極化現象 22
第三章 實驗設備與方法 25
3.1 實驗流程圖 25
3.2 實驗設備 26
3.2.1 微放電加工機(Micro-EDM) 26
3.2.2 超音波清洗機 27
3.2.3 數位電錶 27
3.2.4 燃料電池測試設備 28
3.3 實驗程序 29
3.3.1 流道型式 29
3.3.2 金屬雙極板的製作 33
3.3.3 膜電極組(MEA)製作 36
3.3.4 電池組裝過步驟 37
3.3.5 燃料電池漏電測試 39
3.3.6 燃料電池密封測試 39
3.4 測試參數 39
3.4.1 不同厚度的氣密墊片 39
3.4.2 不同陽極進氣流量 40
3.4.3 接觸阻抗 40
3.4.4 不同螺栓扭力 41
3.4.5 不同流道肋寬度 42
第四章 實驗結果與討論 44
4.1 氣密墊片厚度的影響 44
4.2 陽極進氣流量對於電池性能之影響 47
4.3 流道肋寬度對電池接觸阻抗之影響 52
4.4 螺栓扭力對燃料電池性能之影響 53
4.5 不同流道之影響 59
4.5.1 相同流量比較不同流道對電池性能之影響 59
4.5.2 相同螺栓扭力比較不同流道對電池性能之影響 65
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 71
參考文獻 73

1. 吳煌,朱博祥,吳振中,我國能源科技研發之目標與願景,能源技術專輯,2004年4月。
2. BP, Statistical Review of World Energy, June 2003.
3. 黃鎮江 (2005),燃料電池,第二版。臺北市:全華科技出版社。
4. W.R. Grove, Philos. Mag. 14, pp.127, 1839.
5. H. Tsuchiya, O. Kobayashi, “Mass production cost of PEM fuel cell by learning curve”, Journal of Hydrogen Energy, Vol.29,pp.985-990, 2004.
6. H. Tawfik, Y. Hung, D. Mahajan, “Metal bipolar plates for PEM fuel cell-A review”, Journal of Power Sources, Vol.163, pp.755–767, 2007.
7. R.C. Makkus, A.H.H. Janssen, F.A. de Bruijn, R.K.A.M. Mallant, “Use of stainless steel for cost competitive bipolar plates in the SPFC”, Journal of Power Sources, Vol.86, pp.274–282, 2000.
8. D.P. Dauis, P.L. Adcock, M. Turpin and S.J. Rowen, “Stainless steel as a bipolar plate material for solid polymer fuel cels”, Journal of Power Sources, Vol.86, pp.237-242, 2000.
9. S.J. Lee, C.H. Huang., Y.P. Chen, “Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell, Journal of Materials Processing Technology”, Journal of Materials Processing Technology, Vol.140, pp.688–693, 2003.
10. J. Wind, R. Späh, W. Kaiser, G. Böhm, “Metallic bipolar plates for PEM fuel cells”, Journal of Power Sources,Vol.105, pp.256–260, 2002.
11. H.I. Lee, C.H. Lee, T.Y. Oh, S.G. Choi, I.W. Park, K.K. Baek, “Development of 1 kW class polymer electrolyte membrane fuel cell power generation system”, Journal of Power Sources,Vol.107, pp.110–119, 2002.
12. F.A. de Bruijn, D.C. Papageorgopoulos, E.F. Sitters, G.J.M. Janssen, “The influence of carbon dioxide on PEM fuel cell anodes”, Journal of Power Sources,Vol.110, pp.117–124, 2002.
13. C.Y. Chen, J.Y. Shiu, Y.S. Lee, “Development of a small DMFC bipolar plate stack for portable applications”, Journal of Power Sources,Vol.159, pp.1042–1047, 2006.
14. Z. Qi, A. Kaufman, “Activation of low temperature PEM fuel cells”, Journal of Power Sources,Vol.111, pp.181–184, 2002.
15. H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells”, Journal of Power Sources,Vol.142, pp.117–124, 2005.
16. A.S. Aricò, P. Cretì, V. Baglio, E. Modica, V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell”, Journal of Power Sources,Vol.91, pp.202–209, 2000.
17. K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells”, Journal of Power Sources,Vol.31, pp.175–181, 2004.
18. 陳,洪,李,流道設計對質子交換膜燃料電池性能的影響,Journal of Technology, Vol. 22, pp.71-76 , 2007
19. P.L. Hentall , J.B Lakeman , G.O. Mepsted , Paul L. Adcock , Jon M. Moore, “INew materials for polymer electrolyte membrane fuel cell current collectors”, Journal of Power Sources,Vol.80, pp.235–241, 1999.
20. W.M. Yan , C.Y. Soong , F. Chen, H.S. Chu, “Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells”, Journal of Power Sources,Vol.125, pp.27–39, 2004.
21. A. Kumar, R.G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources,Vol.113, pp.11–18, 2003.
22. Y.G. Yoon, W.Y. Lee, G.G. Park, T.H. Yang, C.S. Kim, “Effects of channel configurations of flow field plates on the performance of a PEMFC”, Electrochimica Acta,Vol.50, pp.709–712, 2004.
23. 李佳鴻,質子交換膜燃料電池流道寬度及操作條件對氧氣濃度分佈之影響研究,台灣大學機械工程研究所碩士論文,2003
24. V.A. Paganin , E.A. Ticianelli, E.R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks”, Journal of Power Sources,Vol.70, pp.55–58, 1998.
25. J.J. Hwang, W.R. Chang, F.B. Weng, A. Su , C.K. Chen, “Development of a small vehicular PEM fuel cell system”, Journal of Hydrogen Energy,Vol.33, pp.3801–3807, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top