跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉孝威
研究生(外文):Liu, Hsiao-Wei
論文名稱:銀奈米線薄膜電極於光伏元件之應用
論文名稱(外文):Photovoltaic application of silver nanowire thin film electrode
指導教授:余沛慈余沛慈引用關係
指導教授(外文):Yu, Peichen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:70
中文關鍵詞:銀奈米線有機太陽能電池奈米結構
外文關鍵詞:Silver nanowireorganicsolar cellnano structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:734
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功的利用了銀奈米線(silver nanowires, agnw) 搭配旋塗製程製作了大面積的透明導電薄膜並做為上電極應用在有機-非有機異質接面混合式太陽能電池上。 目前我們經過最佳化的銀奈米線透明導電薄膜有著寬頻譜 (400nm ~ 2600 nm)大約85%的高穿透率以及低於50Ω/□的片電阻,與一般常用的氧化銦錫(ITO)薄膜相比,已經是相當接近了,但在製程成本方面,由於銀奈米線薄膜皆為溶液製程,相較於氧化銦錫的電漿濺鍍製程,無論是在材料消耗以及製程成本上都是有大幅下降的趨勢。並且我們利用了銀奈米線薄膜做為前電極,製作了面積為1平方公分的有機-非有機異質接面混合式太陽能電池,並且有10.49%的高光電轉換效率(PCE)以及72%的填充因子(FF),相較於使用銀金屬梳狀電極的樣品,有著236.9%以及243%的增益。
本篇論文的第一部分將會討論如何利用含有銅元素鹽類輔助的多元醇還原法,快速且低成本的製作適合的一維奈米銀線結構. 接著則是將銀奈米線均勻的塗佈至玻璃基板上以量測銀奈米線薄膜的各種光電特性,並且我們也嘗試了一些關於改善銀奈米線薄膜導電性的方法來使銀奈米線薄膜成為高品質的透明導電薄膜。最後我們將銀奈米線薄膜應用至有機-非有機異質接面混合式太陽能電池做為前電極,比較了在不同基板形貌下銀奈米線薄膜與PEDOT:PSS層的接觸情形對於整體光電轉換效率以及填充因子的影響。 並且我們優化了整個製程且搭配矽奈米線結構的基板製作出了高效率的異質接面混合式太陽能電池做為證實銀奈米線薄膜應用於光伏元件上的除了成本之外也可提升效率的優勢。

We have successfully fabricated large-area silver nanowire (Agnw) transparent conductive thin film using a spin coating process and apply it to the organic-inorganic hetrojunction hybrid solar cells as the frontal electrode. The optimized Agnw thin film has a broadband high transmittance of 85% and low sheet resistance of 50Ω/□ which is comparable to commercial indium tin oxide (ITO) thin film with a low fabrication cost. The 1cm×1cm hybrid solar cells employing Agnw thin film electrode show high power conversion efficiency (PCE) and fill factor of 10.49% and 72% respectively, corresponding to 236.9% and 243% enhancement to reference sample with silver grid electrode.
In the first section of this thesis, I describe how to fabricate the silver nanowires by means of a Cu-containing salt-mediated polyol process which is rapid and low cost fabrication process. Next I introduce the spin coating method and the measurements of transmittance and sheet resistance for the optimization of the Agnw thin film. The improvement of Agnw thin film electrical properties of would also be discussed. Finally, we fabricated hetrojunction organic-inorganic hybrid solar cell with Agnw thin film as the frontal electrode to demonstrate the benefits for photovoltaic device.
We also observe that substrate surface morphology is highly related to device performance with Agnw thin film electrode.

Abstract (in Chinese)…………………………………………………………............i
Abstract (in English)………………………………………………………………….ii
Acknowledgement……………………………………………………………...........iii
Content………………………………………………………………...………..........iv
Figure list………………………………………………………………………….....vi
Table list……………………………………………………………………………....x
Chapter 1 Introduction…………………………………………..………………….1
1-1 Preface……………………………………………………………………..1
1-2 Development of transparent conductive tin film on solar cells……………4
1-3 Motivation…………………………………………………………………9
Chapter 2 Background theory and measurement analysis……………………….11
2-1 The basic structure of solar cell and photovoltaic conversion theory……11
2-2 Solar cells parameters definition…………………………………………16
2-3 The silver nanowire thin film analysis measurement…………………….20
2-4 The solar cell analysis measurement……………………………………..22
Chapter 3 Transparent conductive silver nanowire thin film fabrication and photoelectrical characteristics analysis……………………………….24
3-1 Synthesis of silver nanowires…………………………………………….24
3-2 Silver nanowires synthesis process and coating method…………………31
3-3 Silver nanowires thin film optical and electrical properties measurement………………………………………………….…………..38
3-4 The conductivity improving process of Ag nanowires thin film…………43
Chapter 4 Silver nanowire application on organic-inorganic hybrid solar cells..50
4-1 Fabrication of organic-inorganic hybrid solar cell with silver nanowire electrode…………………………………………………………………...50
4-2 The PCE and EQE measurement and device characteristics analysis……54
Chapter 5 Conclusions and future works…………………………………………64
Reference……………………………………………………………………………66

[1] M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3, (2003).
[2] M.A. Martinez, J. Herrero and M.T. Gutierrez, Sol. Energy Mater. Sol. Cells 45 (1997) 75.
[3] L. Raniero, I. Ferreira, A. Pimentel, A.Goncalves, P. Canhola, E. Fortunato and R. Martins, Thin Solid Films 511-512 (2006) 295.
[4] M. A. Green, K. Emery, Y. Hishikawa. W. Warta, “Solar cell efficiency tables (version 35) ,” Prog. Photovolt. Res. Appl. 18, 144-150, (2010).
[5] Stephen P. Tobin, S. M. Vernon, C. Bajgar, Steven J. Wojtczuk, Michael R. Melloch, A. Keshavarzi, T. B. Stellwag, S. Venkatensan, Mark S. Lundstrom, Keith A. Emery, “Assement of MOCVD- and MBE-Grown GaAs for High-Efficiency Solar Cell Applications,” IEEE Transactions On Electron Devices, 37, 469-477, (1990).
[6] M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs, and N. S. Lewis, Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures ,Science 249, 1146 (1990).
[7] A. A. D. T. Adikaari, D. M. N. M. Dissanayake, and S. R. P. Silva, IEEE. J. Sel. Top. Quant. 16, 1595 (2010).
[8] J. W.P. Hsu and M. T. Lloyd, Organic/Inorganic Hybrids for Solar Energy Generation, Mrs. Bull, 35, 422 (2010).
[9] F. Zhang, B. Sun, T. Song, X. Zhu, and S. T. Lee, Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 μm thin-film Si absorber ,Chem. Mater. 23, 2084 (2011).
[10] S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells,Chem. Mater. 22, 3108 (2010).
[11] J. C. Nolasco, R. Cabr?? J. Ferr??Borrull, L. F. Marsal, M. Estrada, and J. Pallar?嫳, Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell , J. Appl. Phys. 107, 044505 (2010).
[12] W. Shockley in A. Goetzberger and R. M. Scarlett, “Research and Investigation of Inverse Epitaxial UHF Power Transistors,” Rep. No. AFAL-TDR-64-207, Air Force Avionics Lab., Write-Patterson Air Force Base, OH, Sept. 1964.
[13] Keith Emery, “Measurement and Characterization of Solar Cells and Modules,” in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York, 701-752, (2003).
[14] Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B. & Figlarz, M. (1989). Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles, Solid State Ionics, Vol. 32, No. 3, 198-205, ISSN:0167-2738.
[15] (a)Xia, Y.; Xiong, Y.; Lim, B. & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie – International Edition, Vol. 48, No. 1, 60-103, ISSN: 1521-3773. (b) Wiley, B.; Sun, Y. G. & Xia, Y. N. (2007). Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, Vol. 40, No. 10, 1067-1076, ISSN: 0001-4842. (c) Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z.Y.; Li, X.D. & Xia, Y.N. (2005). Shape-controlled synthesis of silver and gold nanostructures. MRS Bulletin, Vol. 30, No. 5, 356-361, ISSN: 0883-7694. (d) Chen, J. Y.; Wiley, B. J. & Xia, Y. N. (2007). One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications. Langmuir, Vol. 23, No. 8, 4120-4129, ISSN: 0743-7463. (e) Wiley, B.; Sun, Y. G.; Mayers, B. & Xia, Y. N. (2005). Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry-A European Journal, Vol. 11, No. 2, 454-463, ISSN: 0947-6539. (f) Sun, Y. G. & Xia, Y. N. (2002). Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Advanced Materials, Vol. 14, No. 11, 833-837, ISSN: 0935-9648.
[16] Mullin, J. (1997). Crystallization, Oxford University Press, ISBN: 0750611294, New York.
[17] Marks, L. D. (1994). Experimental studies of small-particles structures. Reports on Progress in Physics, Vol. 57, No. 63, 603-649, ISSN: 0034-4885.
[18] Cleveland, C. L. & Landman, U. (1991). The energetic and structure of nickel clusterssize dependence. Journal of Chemical Physics, Vol. 94, No. 11, 7376-7396, ISSN: 0021-9606.
[19] Xinling Tang1 and Masaharu Tsuji1,2 ,Syntheses of Silver Nanowires in Liquid Phase, Nanowires Science and Technology, ISBN 978-953-7619-89-3
[20] (a) Korte, K. E.; Skrabalak, S. E. & Xia, Y. (2008). Rapid synthesis of silver nanowires through a CuCl- or CuCl2- mediated polyol process. Journal of Materials Chemistry, Vol. 18, No. 4, 437-441, ISSN: 0959-9428. (b)Wiley, B.; Sun, Y. G. & Xia, Y. N. (2005). Syntheses of Silver Nanowires in Liquid Phase 41 Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir, Vol. 21, No. 8, 077-8080, ISSN: 0743-7463.
[21] (a) Korte, K. E.; Skrabalak, S. E. & Xia, Y. (2008). Rapid synthesis of silver nanowires through a CuCl- or CuCl2- mediated polyol process. Journal of Materials Chemistry, Vol. 18, No. 4, 437-441, ISSN: 0959-9428. (b)Wiley, B.; Sun, Y. G. & Xia, Y. N. (2005). Syntheses of Silver Nanowires in Liquid Phase 41 Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir, Vol. 21, No. 8, 077-8080, ISSN: 0743-7463.
[22] Campbell, C. T. (1985). Atomic and molecular-oxygen adsorption on Ag(111). Surface Science, Vol. 157, No. 1, 43-60, ISSN: 0039-6028
[23] deMongeot, F. B.; Cupolillo, A.; Valbusa, U. & Rocca, M. (1997). O2 dissociation on Ag(001): The role of kink sites. Chemical Physics Letters, Vol. 270, No. 3-4, 345-350, ISSN: 0009-2614.
[24] Kylee E. Korte, Sara E. Skrabalak* and Younan Xia*,Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, Journal of Materials Chemistry 2008, 18, 437–441
[25] Wiley, B.; Herricks, T.; Sun, Y. G. & Xia, Y. N. 2004. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of singlecrystal, truncated cubes and tetrahedrons. Nano Letters, Vol. 4, No. 9, 1733-1739, ISSN: 1530-6984.
[26] Xuan, W.; Linjie, Z.; Mullen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323.
[27] De, S.; Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transparent of Thin Graphene Films ACS Nano, published online April 12, 2010, http://doi.dx.org/10.1021/nn100343f.
[28] a. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 06–710.
[29] Budhadipta Dan, Glen C. Irvin, and Matteo Pasquali , Continuous and Scalable abrication of Transparent Conducting Carbon Nanotube Films ,ACS NANO VOL. 3 ▪ NO. 4 ▪ 835–843 ▪ 2009
[30] Erik C. Garnett1,Wenshan Cai1, Judy J. Cha1, Fakhruddin Mahmood1,2, Stephen T. Connor1,M. Greyson Christoforo1, Yi Cui1,3, Michael D. McGehee1 and Mark L. Brongersma1, Self-limited plasmonic welding of silver nanowire junctions , NATURE MATERIALS DOI: 10.1038/NMAT3238
[31] Sukanta De, Thomas M. Higgins, Philip E. Lyons, Evelyn M. Doherty, Peter N. Nirmalraj,Werner J. Blau, John J. Boland, and Jonathan N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films:Extremely High DC to Optical Conductivity Ratios , ACS Nano VOL. 3 ▪ NO. 7 ▪ 1767–1774
[32] SIDDARTH G. SUNDARESAN,1 MULPURI V. RAO,1,6 YONGLAI TIAN,2 JOHN A. SCHREIFELS,3 MARK C. WOOD,4 KENNETH A. JONES,4 and ALBERT V. DAVYDOV , Comparison of Solid-State Microwave Annealing with Conventional Furnace Annealing of Ion-Implanted SiC , Journal of ELECTRONIC MATERIALS, Vol. 36, No. 4, 2007
[33] Cai-Hong Liu and Xun Yu, Silver nanowire-based transparent, flexible, and conductive thin film, Nano Research Letters 2011,6:75.
[34] Liqiang Yang, Tim Zhang, Huaxing Zhou, Samuel C. Price, Benjamin J. Wiley, and Wei You, Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes, ACS Appl. Mater. Interfaces, 2011, 3 (10), pp 4075–4084

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊