|
[1] M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3, (2003). [2] M.A. Martinez, J. Herrero and M.T. Gutierrez, Sol. Energy Mater. Sol. Cells 45 (1997) 75. [3] L. Raniero, I. Ferreira, A. Pimentel, A.Goncalves, P. Canhola, E. Fortunato and R. Martins, Thin Solid Films 511-512 (2006) 295. [4] M. A. Green, K. Emery, Y. Hishikawa. W. Warta, “Solar cell efficiency tables (version 35) ,” Prog. Photovolt. Res. Appl. 18, 144-150, (2010). [5] Stephen P. Tobin, S. M. Vernon, C. Bajgar, Steven J. Wojtczuk, Michael R. Melloch, A. Keshavarzi, T. B. Stellwag, S. Venkatensan, Mark S. Lundstrom, Keith A. Emery, “Assement of MOCVD- and MBE-Grown GaAs for High-Efficiency Solar Cell Applications,” IEEE Transactions On Electron Devices, 37, 469-477, (1990). [6] M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs, and N. S. Lewis, Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures ,Science 249, 1146 (1990). [7] A. A. D. T. Adikaari, D. M. N. M. Dissanayake, and S. R. P. Silva, IEEE. J. Sel. Top. Quant. 16, 1595 (2010). [8] J. W.P. Hsu and M. T. Lloyd, Organic/Inorganic Hybrids for Solar Energy Generation, Mrs. Bull, 35, 422 (2010). [9] F. Zhang, B. Sun, T. Song, X. Zhu, and S. T. Lee, Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 μm thin-film Si absorber ,Chem. Mater. 23, 2084 (2011). [10] S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells,Chem. Mater. 22, 3108 (2010). [11] J. C. Nolasco, R. Cabr?? J. Ferr??Borrull, L. F. Marsal, M. Estrada, and J. Pallar?嫳, Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell , J. Appl. Phys. 107, 044505 (2010). [12] W. Shockley in A. Goetzberger and R. M. Scarlett, “Research and Investigation of Inverse Epitaxial UHF Power Transistors,” Rep. No. AFAL-TDR-64-207, Air Force Avionics Lab., Write-Patterson Air Force Base, OH, Sept. 1964. [13] Keith Emery, “Measurement and Characterization of Solar Cells and Modules,” in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York, 701-752, (2003). [14] Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B. & Figlarz, M. (1989). Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles, Solid State Ionics, Vol. 32, No. 3, 198-205, ISSN:0167-2738. [15] (a)Xia, Y.; Xiong, Y.; Lim, B. & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie – International Edition, Vol. 48, No. 1, 60-103, ISSN: 1521-3773. (b) Wiley, B.; Sun, Y. G. & Xia, Y. N. (2007). Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, Vol. 40, No. 10, 1067-1076, ISSN: 0001-4842. (c) Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z.Y.; Li, X.D. & Xia, Y.N. (2005). Shape-controlled synthesis of silver and gold nanostructures. MRS Bulletin, Vol. 30, No. 5, 356-361, ISSN: 0883-7694. (d) Chen, J. Y.; Wiley, B. J. & Xia, Y. N. (2007). One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications. Langmuir, Vol. 23, No. 8, 4120-4129, ISSN: 0743-7463. (e) Wiley, B.; Sun, Y. G.; Mayers, B. & Xia, Y. N. (2005). Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry-A European Journal, Vol. 11, No. 2, 454-463, ISSN: 0947-6539. (f) Sun, Y. G. & Xia, Y. N. (2002). Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Advanced Materials, Vol. 14, No. 11, 833-837, ISSN: 0935-9648. [16] Mullin, J. (1997). Crystallization, Oxford University Press, ISBN: 0750611294, New York. [17] Marks, L. D. (1994). Experimental studies of small-particles structures. Reports on Progress in Physics, Vol. 57, No. 63, 603-649, ISSN: 0034-4885. [18] Cleveland, C. L. & Landman, U. (1991). The energetic and structure of nickel clusterssize dependence. Journal of Chemical Physics, Vol. 94, No. 11, 7376-7396, ISSN: 0021-9606. [19] Xinling Tang1 and Masaharu Tsuji1,2 ,Syntheses of Silver Nanowires in Liquid Phase, Nanowires Science and Technology, ISBN 978-953-7619-89-3 [20] (a) Korte, K. E.; Skrabalak, S. E. & Xia, Y. (2008). Rapid synthesis of silver nanowires through a CuCl- or CuCl2- mediated polyol process. Journal of Materials Chemistry, Vol. 18, No. 4, 437-441, ISSN: 0959-9428. (b)Wiley, B.; Sun, Y. G. & Xia, Y. N. (2005). Syntheses of Silver Nanowires in Liquid Phase 41 Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir, Vol. 21, No. 8, 077-8080, ISSN: 0743-7463. [21] (a) Korte, K. E.; Skrabalak, S. E. & Xia, Y. (2008). Rapid synthesis of silver nanowires through a CuCl- or CuCl2- mediated polyol process. Journal of Materials Chemistry, Vol. 18, No. 4, 437-441, ISSN: 0959-9428. (b)Wiley, B.; Sun, Y. G. & Xia, Y. N. (2005). Syntheses of Silver Nanowires in Liquid Phase 41 Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir, Vol. 21, No. 8, 077-8080, ISSN: 0743-7463. [22] Campbell, C. T. (1985). Atomic and molecular-oxygen adsorption on Ag(111). Surface Science, Vol. 157, No. 1, 43-60, ISSN: 0039-6028 [23] deMongeot, F. B.; Cupolillo, A.; Valbusa, U. & Rocca, M. (1997). O2 dissociation on Ag(001): The role of kink sites. Chemical Physics Letters, Vol. 270, No. 3-4, 345-350, ISSN: 0009-2614. [24] Kylee E. Korte, Sara E. Skrabalak* and Younan Xia*,Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, Journal of Materials Chemistry 2008, 18, 437–441 [25] Wiley, B.; Herricks, T.; Sun, Y. G. & Xia, Y. N. 2004. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of singlecrystal, truncated cubes and tetrahedrons. Nano Letters, Vol. 4, No. 9, 1733-1739, ISSN: 1530-6984. [26] Xuan, W.; Linjie, Z.; Mullen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323. [27] De, S.; Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transparent of Thin Graphene Films ACS Nano, published online April 12, 2010, http://doi.dx.org/10.1021/nn100343f. [28] a. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 06–710. [29] Budhadipta Dan, Glen C. Irvin, and Matteo Pasquali , Continuous and Scalable abrication of Transparent Conducting Carbon Nanotube Films ,ACS NANO VOL. 3 ▪ NO. 4 ▪ 835–843 ▪ 2009 [30] Erik C. Garnett1,Wenshan Cai1, Judy J. Cha1, Fakhruddin Mahmood1,2, Stephen T. Connor1,M. Greyson Christoforo1, Yi Cui1,3, Michael D. McGehee1 and Mark L. Brongersma1, Self-limited plasmonic welding of silver nanowire junctions , NATURE MATERIALS DOI: 10.1038/NMAT3238 [31] Sukanta De, Thomas M. Higgins, Philip E. Lyons, Evelyn M. Doherty, Peter N. Nirmalraj,Werner J. Blau, John J. Boland, and Jonathan N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films:Extremely High DC to Optical Conductivity Ratios , ACS Nano VOL. 3 ▪ NO. 7 ▪ 1767–1774 [32] SIDDARTH G. SUNDARESAN,1 MULPURI V. RAO,1,6 YONGLAI TIAN,2 JOHN A. SCHREIFELS,3 MARK C. WOOD,4 KENNETH A. JONES,4 and ALBERT V. DAVYDOV , Comparison of Solid-State Microwave Annealing with Conventional Furnace Annealing of Ion-Implanted SiC , Journal of ELECTRONIC MATERIALS, Vol. 36, No. 4, 2007 [33] Cai-Hong Liu and Xun Yu, Silver nanowire-based transparent, flexible, and conductive thin film, Nano Research Letters 2011,6:75. [34] Liqiang Yang, Tim Zhang, Huaxing Zhou, Samuel C. Price, Benjamin J. Wiley, and Wei You, Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes, ACS Appl. Mater. Interfaces, 2011, 3 (10), pp 4075–4084
|