跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂育儒
研究生(外文):Yu-Ru Lu
論文名稱:低雜訊放大器與混頻器設計與模擬
論文名稱(外文):Design and simulation of LNA and Mixer
指導教授:楊炳章楊炳章引用關係
指導教授(外文):Ping-Chang Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:低雜訊高增益混頻器寬頻低雜訊放大器超外插式
外文關鍵詞:low noisehigh gainwide-bandsuper heterodyneLNAmixer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是對低雜訊放大器與混頻器理論架構進行探討,並就其設計模擬。最後並對近年來操作在5 GHz左右的混頻器特性參數列表整理,以比較各個混頻器效能的好壞。
所設計的第一個低雜訊放大器以global feedback pairs為基礎架構,以電晶體取代串連回授的電阻,在第一級與第二級電路間串接一電感,來達到增益平坦的效果,輸出端除了做為RF choke的電感外,以一電晶體來達到寬頻的阻抗匹配。此LNA可以操作在2.4 GHz~6 GHz之間,頻寬涵蓋了IEEE 802.11a與IEEE 802.11b的頻率範圍。第二個低雜訊放大器是以低雜訊、高增益為目標,對第一級的電晶體做S參數模擬,找出其寬度與偏壓對電流、雜訊、增益的關係,選擇出一合適的偏壓與電晶體寬度,第二級為cascade架構,以內部串聯諧振的方式來提升其增益,此LNA可操作在3~6GHz,增益為24~25.5dB,雜訊則是在0.8~1.1dB之間。
在混頻器方面,第一個單端輸入單端輸出混頻器架構裡,在輸入端採用微混頻器的技術,輸出端採用current combiner的方法,此混頻器可以操作在2.3 GHz~6 GHz,擁有2.7 GHz的頻寬,涵蓋了IEEE 802.11a與IEEE 802.11b的頻率範圍,在此頻寬內,增益均大於0 dB,IIP3介在9.5~12 dBm之間,雜訊指數則是介於16~18 dB,消耗功率為8.55 mW。第二個電路架構,是由降低輸入的本地振盪訊號頻率的想法所設計的,將LO的頻率減半,以連續降頻的方式將RF的訊號降至基頻,其增益為2 dB,IIP3為4.89 dBm,雜訊指數為12.6 dB,消耗功率為15.5 mW。
上述電路是利用tsmc 0.18um CMOS 製程所設計,模擬軟體為Agilent ADS 2005A。
誌謝 .................................................... i
中文摘要 ............................................... ii
英文摘要 ............................................... iv
目錄 .................................................... v
圖目錄 ............................................... viii
表目錄 ..................................................... xi
第一章 序論
1.1 研究背景 ............................................ 1
1.2 接收機積體電路架構介紹 .............................. 3
1.3 論文架構 ............................................ 4
第二章 混頻器分析
2.1 超外差式混頻器 ...................................... 5
2.2 雙降頻式超外差混頻器 ................................ 6
2.3 直接降頻式混頻器 .................................... 7
2.4 討論 ............................................... 10
第三章 接收機重要規格參數
3.1 轉換增益/損耗(Conversion Gain/Loss) ................ 12
3.2 1dB壓縮點(P1dB) .................................... 12
3.3 輸入三階截斷點(IIP3) ............................... 14
3.4 雜訊指數(Noise Figure) ............................. 16
3.5 輸入返回損耗(return loss) .......................... 18
3.6 隔離度(Isolation) .................................. 18
3.7 功率消耗(power consumption) ........................ 19
第四章 兩級寬頻低雜訊放大器電路設計
4.1 低雜訊放大器基本架構 ............................... 20
4.2 回授型低雜訊放大器(LNA)架構 ........................ 21
4.3 寬頻回授LNA電路設計 ................................ 22
4.3.1電路架構 .......................................... 22
4.3.2 模擬結果 ......................................... 24
4.4 寬頻高增益LNA電路設計 .............................. 30
4.4.1電路架構 .......................................... 30
4.4.2 模擬結果 ......................................... 31
第五章 混頻器架構說明
5.1 混頻器簡介 ......................................... 38
5.2 混頻器種類 ......................................... 38
5.2.1 被動式混頻器 ..................................... 38
5.2.2 主動式混頻器 ..................................... 39
5.3 單平衡式混頻器架構 ................................. 39
5.4 雙平衡式Gibert Cell混頻器架構 ...................... 41
5.5 常見的設計技巧 ..................................... 44
5.5.1 Current bleeding ................................. 44
5.5.2 差動訊號轉換成單端訊號 ........................... 44
5.5.3 提高線性度 ....................................... 46
5.5.4 微混頻器(Micro-mixer) ............................ 49
第六章 混頻器電路設計
6.1 Mixer 1 : 單端輸入單端輸出外差式混頻器 ............. 51
6.2 模擬結果 ........................................... 53
6.3 Mixer 2 : 兩次降頻混頻器電路設計 ................... 61
6.4 模擬結果 ........................................... 62
第七章 結論與未來研究方向 .............................. 66
參考文獻 ............................................... 68
[1] No Gil Myoung, Ho Suk Kang, Seok Tae Kim, Byoung Gun Choi, Seong-Su Park, and Chul Soon Park,” Low-voltage, Low-power and High-gain Mixer Based on Unbalanced Mixer Cell”, in proceedings of The 1st European Microwave Integrated Circuits Conference, Page(s):395 – 398,2006.
[2] Dunsmore, J., Hubert, S. , and Williams, D.,” Vector mixer characterization for image mixers”, in proceedings of IEEE MTT-S International Microwave Symposium Digest, Page(s):1743-1746 Vol.3,2004.
[3] IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High Speed Physical Layer in the 5GHz Band
[4] R.V. Nee and R. Prasad, OFDM Wireless Multimedia Communication, ArtchHouse, 2000
[5] Dunsmore, J.,”Novel method for vector mixer characterization and mixer test system vector error correction”, in proceedings of IEEE MTT-S International Microwave Symposium Digest, Page(s):1833 - 1836,2002.
[6] Tzung-Han Wu, and Chinchun Meng,”10-GHz Highly Symmetrical Sub Harmonic Gilbert Mixer Using GaInP/GaAs HBT Technology”, in proceedings of IEEE Microwave and Wireless Components Letters, Page(s):370 - 372,2007.
[7] J. C. Palais, Fiber Optic Communications, Prentice Hall, 1998
[8] Liang-Hui Li , Huey-Ru Chuang , Fu-Lin Lin “RF System Planning of 802.11a WLAN Receiver and 5GHz CMOS Differential LNA/Mixer Circuit Design” Department of Electrical Engineering National Cheng Kung University. Thesis for Master of Science June, 2002
[9] B. Razavi, “A 5.2-GHz CMOS Receiver with 62-dB Image Rejection,” IEEE J. Solid-State Circuits, vol.36, no. 5, May 2001
[10] Jaeseo Lee, et all, “Design and Implementation of CMOS LVDS 2.5Gb/s Transmitter and 1.3Gb/s Receiver for Optical Interconnections,” IEEE Circuits and Systems, ISCAS 2001, vol.4, pp.702-705, May, 2001.
[11] Chip Implementation Center “RF CMOS IC Design Flow – Receiver Architectures”
[12] R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications. Prentice Hall; Har/Cdr edition (Nov 30,1999)
[13] Keng Leong Fong and R. G. Meyer, “Monolithic RF Active Mixer Design,” IEEE Transactions On Circuits And System, vol. 46, No. 3, pp. 231-239, March 1998.
[14] Da-Rong Huang, Huey-Ru Chuang, “Research on Differential CMOS RFICs for WLAN and DTV Broadband RF Tuner Applications,” Department of Electrical Engineering National Cheng Kung University Thesis for Master of Science, June, 2004
[15] B. Razavi, et al. “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuit and System I., vol. 41, pp.750-754, Nov. 1994.
[16] Behzad Razavi, “Design of Analog CMOS Integrated Circuits, McGraw-Hill,” 2001.
[17] MingChu Chiang, Shey-Shi Lu, “Analysis, Design, and Realization of Wideband Amplifiers and Low Noise Amplifiers,” Department of Electrical Engineering National Taiwan University Thesis for Master of Science, June, 2001
[18] F. T. Chien and Y.J. Chan, “Bandwidth enhancement of transimpedance amplifier by capacitive-peaking design,” IEEE J. Solid-State Circuits, vol. 34, pp. 1167-1170, Aug. 1999.
[19] Yi-Jing Lin, Shawn S. H. Hsu, Jun-De Jin, C. Y. Chan, “A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTER, vol. 17,NO. 3,MARCH 2007.
[20] Choong-Yul Cha, Sang-Gug Lee, “A LOW POWER, HIGH GAIN LNA TOPOLOGY”, Microwave and Millimeter Wave Technology, 2000, 2nd International Conference on. ICMMT 2000, pp. 420-423, Sept. 2000.
[21] Keang-Po Ho, Shien-Kuei Liaw, and Chinlon Lin,”Efficient photonic mixer with frequency doubling”, IEEE Photonics Technology Letters, Page(s):511 –513,1997.
[22] Jianjun Yu, Zhensheng Jia, and Gee Kung Chang,” All-optical mixer based oncross-absorption modulation in electroabsorption modulator”, IEEE Photonics Technology Letters, Page(s):2421 - 2423,2005.
[23] Ganzevles, W.F.M., Yagoubov, P., Gao, J.R., Klapwijk, T.M., de Korte, and P.A.J.,”Nb superconducting hot electron bolometer mixers coupled with microstrip lines”, IEEE Transactions on Applied Superconductivity, Page(s):570 - 573 ,2001.
[24] C.K. Sun, R.J. Orazi, S.A. Pappert, and W.K. Burns,” A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation”, IEEE Photonics Technology Letters, Page(s):1166 - 1168,1996.
[25] Chun-Lin Lu, Huey-Ru Chuang, “2.4GHz CMOS RF Receiver For IEEE 802.11 b/g WLAN Application”, Thesis for Master of Science June, 2003
[26] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[27] Jinsung Park, Chang-Ho Lee, Byung-Sung Kim, and Joy Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006
[28] Philips Semiconductor, Philips RF/Wireless Communications Data Handbook, 1996.
[29] Stephen Wu and Behzad Razavi, ”A 900MHz/1.8GHz Receiver for Dual-Band Applications,” IEEE J. Solid-State Circuit, Vol.33, No.12, pp2178-2185, December 1998.
[30] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric class-AB input stage ”, IEEE J. Solid-State Circuits, vol. 32, pp.1412-1423, Sept. 1997.
[31] Jing-Chyi Wang, Ro-Min Weng, “Design of High Performance Down Conversion Mixers for RF Applications” A Thesis Submitted to Institute of Electrical Engineering College of Sciences and Engineering National Dong Hwa University, July 2007
[32] Chen, De-Mao, Lin, Zhi-Ming, “A Fully Integrated 3 to 5 GHz CMOS Mixer with Active Balun for UWB Receiver,” IEEE Asia Pacific Conference on Circuits and Systems p.370-373, 2006
[33] Yuan-Kai Chu, Che-Hong Liao, Huey-Ru Chuang, “5.7GHz 0.18um CMOS Gain-Controlled LNA and Mixer For 802.1 la WLAN Applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, p.221-224, 2003
[34] Skandar Douss, Mourad Loulou, Farid Touati, “A 3.1–4.8 GHz new CMOS mixer topology for IEEE 802.15.3a UWB standard receivers,” Midwest Symposium on Circuits and Systems, p.431-434, 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊