跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周正鴻
研究生(外文):Cheng-Hung Chou
論文名稱:纖維蛋白膠混合明膠/透明質酸/軟骨素共聚物作為關節軟骨組織工程支架之研究
論文名稱(外文):Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering
指導教授:林峯輝
指導教授(外文):Feng-Huei Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:111
中文關鍵詞:纖維蛋白明膠透明質酸軟骨素關節軟骨組織工程
外文關鍵詞:fibringelatinhyaluronic acidchondroitin-6-sulfatearticular cartilagetissue engineering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:508
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
關節軟骨是一為透明且具彈性的結締組織,其覆蓋於骨頭末端以提供運動時骨頭之間潤滑及吸收壓力的保護作用,但是其一旦受到損傷,並無法自體修復。因此本研究將以組織工程方法利用明膠、透明質酸、軟骨素與纖維蛋白膠於體外培養出軟骨組織,以達到修復受損軟骨的目的。
在支架材料的製備上,選取由豬皮煉製的明膠(Gelatin),並加入透明質酸(HA)和軟骨素(C6S),透過1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)的雙式交聯反應形成共聚物(GHC6S),並藉由冷凍乾燥法移除水分,在液態氮中研磨成微顆粒;纖維蛋白原由豬血漿經冷凍沈澱後取得,另外豬血漿中的第二凝血因子加入10% CaCl2活化後與纖維蛋白原反應聚合成纖維蛋白膠。經過一週及二週的軟骨細胞培養測試,進行Hematoxylin & Eosin、Alcian blue之組織化學染色、S-100蛋白和第二型膠原蛋白免疫組織化學染色,藉以分析細胞生長分佈與基因表現的情形;配合real time-PCR分析TIMP-1, MMP-2, MT1-MMP, aggrecan, decorin, IL-b1, TGF-b1, and FADD以及一、二、十型膠原蛋白的表現與否,檢測軟骨細胞基因表現的能力及狀態。並且進行總GAGs和硫化GAGs的定量分析。
實驗結果顯示GHC6S顆粒的大小約在50-300μm左右。GHC6S顆粒所製備而成的纖維蛋白膠支架能夠有效促進細胞外基質分泌,並抑制細胞外基質的降解,適合於軟骨組織工程。
Articular cartilage provides functions of lubrication to shear stress and protection from compressive force, but it has poor ability to repair itself after suffering damage. The advanced method of tissue engineering is developed and used to maintain cell functions for tissue regeneration. Autologous fibrin glue has been demonstrated as a potential scaffold with very good biocompatibility for neocartilage formation. However, fibrin glue has been reported not to provide enough mechanical strength, but with many growth factors to interfere the tissue growth. Gelatin/hyaluronic acid/chondroitin-6-sulfate (GHC6S) tricopolymer sponge has been prepared as scaffold for cartilage tissue engineering and showed very good results, but problems of cell seeding and cell distribution troubled the researchers. In this study, GHC6S particles would be added into the fibrin glue to provide better mechanical strength, better cell distribution, and easier cell seeding, which would be expected to improve cartilage regeneration in vitro. Porcine cryo-precipitated fibrinogen and thrombin prepared from prothrombin activated by 10% CaCl2 solution were used in two groups. One is the fibrin glue group in which porcine chondrocytes were mixed with thrombin–fibrinogen solution, which was then converted into fibrin glue. The other is GHC6S-fibrin glue in which GHC6S particles were added into the thrombin-fibrinogen solution with porcine chondrocytes. After culturing for 1-2 weeks, the chondrocytes cultured in GHC6S-fibrin glue showed a round shape with distinct lacuna structure and showed positive in S-100 protein immunohistochemical stain. The related gene expressions of tissue inhibitor of metalloproteinases-1, matrix metalloproteinase- 2, MT1-MMP, aggrecan, decorin, type I, II, X collagen, interleukin-1 b, transforming growth factor-b 1 (TGF-b1), and Fas-associating death domain were checked by real-time PCR. Total GAGs and sulfated GAGs were also quantified by p-dimethylaminobenzaldehyde reaction and 1,9- dimethymethylene blue (DMMB) assay, respectively. The results indicated that the chondrocytes cultured in GHC6S-fibrin glue would effectively promote extracellular matrix (ECM) secretion and inhibit ECM degradation. The evidence could support that GHC6S-fibrin glue would be a promising scaffold for articular cartilage tissue engineering.
Contents Page
Abstract i
中文摘要 iii
Contents iv
Abbreviation list x

Chapter 1 Introduction 1
1.1 Overview 1
1.2 Osteoarthritis 1
1-2-1 Osteoarthritis prevalence 2
1-2-2 The examination of articular cartilage and its surface 3
1-3 The treatments to osteoarthritis 4
1-3-1 Drugs used for osteoarthritis 4
1-3-2 Hyaluronic acid injection 5
1-3-3 Drilling, Microfracture and Abrasion 6
1-3-4 Autologous chondrocytes transplantation 8
1-3-5 Osteochondral transplantation 9
1-4 Tissue engineering method for articular cartilage 11
1-4-1 Scaffold 11
1-4-2 Cells 13
1-4-3 Signals 14
1-5 The purpose of study 15

Chapter 2 Basic science and theory 16
2-1 The compositions of different cartilage
2-2 The structure of articular cartilage 19
2-3 metabolism of articular cartilage 24
2-4 Scaffold design by materials derived from the articular cartilage ECM 26
2-4-1 GHC6S materials 26
2-4-2 Fibrinogen polymerization 28

Chapter 3 Materials and methods 32
3-1 Preparation of GHC6S particle 32
3-2 Fibrinogen cryopricipitation 37
3-3 Prothrombin activation 39
3-4 Chondrocytes isolation 40
3-5 Cells seeding 42
3-6 The morphology of GHC6S particles by scanning electrical microscopy (SEM) 43
3-7 Total DNA measurement for Examining Cell Proliferation 44
3-8 Total GAGs and non sulfated GAGs quantification 45
3-9 Sulfated GAGs measurement by DMMB 46
3-10 Histological evaluation 47
3-11 Immunohistochemical evaluation 48
3-12 Gene expression examination 49
3-12-1 RNA isolation 49
3-12-2 Reverse transcription polymerase chain reaction 50
3-12-3 Polymerase chain reaction for electrophoresis 51
3-12-4 Real-time PCR 52
3-13 Statistical analysis 56

Chapter 4 Results 57
4-1 Morphology of GHC6S particles
4-2 Histological evaluation 58
4-3 Gene expression of articular cartilage related collagens 59
4-4 Proteoglycans expression 60
4-5 Gene expression related with extra-cellular matrix degradation 61
4-6 Cytokines expression 62
4-7 GAGs synthesis 63

Chapter 5 Discussion 65
Chapter 6 Conclusion 71
References 84

Figures vii
Fig. 1-1 The arrow pointed the defect with bone marrow flowingout with mesenchymal stem cells 7
Fig. 1-2 Chondrocytes were expanded and implanted into the defect of cartilage 8
Fig. 1-3 Operation of the osteochondral graft transplantion 10
Fig. 2-1 Proteoglycan aggregate 18
Fig. 2-2 (a) The zones of articular cartilage of different collagen network 23
Fig. 2-2 (b) The zones of articular cartilage of different morphology of chondrocytes 23
Fig. 2-3 (a) The structure of fibrinogen 30
Fig. 2-3 (b) The domains of fibrinogen 31
Fig. 2-3 (c) The crosslinking of fibrinogen 31
Fig. 3-1 (a) Chemical structures of hyaluronic acid 34
Fig. 3-1 (b) Chemical structures of chondroitin-6-sulfate 34
Fig. 3-2 Diagram of crosslinking mechanism by EDC 36
Fig. 4-1 Gelatin/ hyaluronic acid/ chondroitin-6-sulfate (GHC6S) particles were examined by scanning electron microscopy. 73
Fig. 4-2 (a) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (H&E staining) 74
Fig. 4-2 (b) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (H&E staining) 74
Fig. 4-2 (c) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (H&E staining) 74
Fig. 4-2 (d) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (H&E staining) 74
Fig. 4-3 (a) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (Alcian blue staining) 75
Fig. 4-3 (b) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (Alcian blue staining) 75
Fig. 4-3 (c) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (Alcian blue staining) 75
Fig. 4-3 (d) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (Alcian blue staining) 75
Fig. 4-4 (a) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (S-100 IHC staining) 76
Fig. 4-4 (b) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (S-100 IHC staining) 76
Fig. 4-4 (c) After cultured for 1 week, constructs of chondrocytes cultured in fibrin glue (S-100 IHC staining) 76
Fig. 4-4 (d) After 1 week, constructs of chondrocytes cultured in GHC6S-fibrin glue (S-100 IHC staining) 76
Fig. 4-5 (a) The values of –△Ct of relative gene expression in real-time PCR by type II collagen 77
Fig. 4-5 (b) The values of –△Ct of relative gene expression in real-time PCR bytype I collagen 77
Fig. 4-5 (c) The values of –△Ct of relative gene expression in real-time PCR by type X collagen 77
Fig. 4-6 (a) The values of –△Ct of relative gene expression in real-time PCR by aggrecan 78
Fig. 4-6 (b) The values of –△Ct of relative gene expression in real-time PCR by decorin 78
Fig. 4-7 (a) The values of –△Ct of relative gene expression in real-time PCR by MMP-2 79
Fig. 4-7 (b) The values of –△Ct of relative gene expression in real-time PCR byMT1-MMP 79
Fig. 4-7 (b) The values of –△Ct of relative gene expression in real-time PCR by TIMP-1 79
Fig. 4-8 (a) The values of –△Ct of relative gene expression in real-time PCR by TGF-b1 80
Fig. 4-8 (b) The values of –△Ct of relative gene expression in real-time PCR by IL-1b 80
Fig. 4-8 (c) The values of –△Ct of relative gene expression in real-time PCR by FADD 80
Fig. 4-9 Total GAGs content 81
Fig. 4-10 Sulfated GAGs content 82
Fig. 4-11 Non-sulfated GAGs content 83

Tables ix
Table 2-1 The compositions of hyaline cartilage 18
Table 2-2 The identified four zones of articular cartilage 21
Table 2-3 Articular cartilage structure and the composition distribution 22
Table 2-4 The enzymes and their inhibitors to the related articular cartilage ECM 25
Table 2-5 Plasma clotting factors 29
Table 3-1 The composition of GHC6S sponge in weight percent 35
Table 3-2 CPDA-1 (500 mL Collection Bags ) compositions 38
Table 3-3 The preparation of culture medium 41
Table 3-4 Reverse transcription solution I 53
Table 3-5 Eeverse transcription solution II 53
Table 3-6 RT-PCR running solution 53
Table 3-7 The primers designed for the real-time PCRa 54
1.Almarza, A. J., and Athanasiou, K. A.: Design Characteristics for the Tissue Engineering of Cartilaginous Tissues. Annals of Biomedical Engineering, 32: 2-17, 2004.
2.Arosarena, O.: Tissue engineering. Current Opinion in Otolaryngology & Head & Neck Surgery, 13(4): 233-241, 2005.
3.Aspinall, G.: The polysaccharides. Edited, 338-340, Orlando, Academic press, 1985.
4.Bayliss MT, O. D., Woodhouse S, Davidson C: Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem, 274(22): 15892-900, 1999.
5.Benya, P., and Shaffer, J.: Dedifferentaiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. cell, 30(1): 215-224, 1982.
6.Black, J., and Hastings, G.: Handbook of biomaterial properties. Edited, London, New York : Chapman & Hall, 1998.
7.Bos, P.; DeGroot, J.; Budde, M.; Verhaar, J.; and van Osch, G.: Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum, 46(4): 976-85, 2002.
8.Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; and Peterson, L.: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 331(14): 889-95, 1994.
9.Brittberg, M.; Tallheden, T.; Sjogren-Jansson, B.; Lindahl, A.; and Peterson, L.: Autologous chondrocytes used for articular cartilage repair: an update. Clinical Orthopaedics & Related Research, 391 Suppl: S337-S348, 2001.
10.Buckwalter, J.: Articular cartilage. Instr Course Lect, 32: 349-370, 1983.
11.Buckwalter, J.; Rosenberg, L.; and Hunziker, E.: Articular cartilage: composition, structure, response to injury, and methods of facilitating repair. In: Ewwing Jw, ed. Articular Cartilage and Knee Joint Function: Basic science and Arthroscopy. Edited, 19-56, New York, Raven Press, 1990.
12.Buckwalter, J.; Saltzman, C.; and Brown, T.: The impact of osteoarthritis. Clin Orthoped Rel Res, 427S: S6-S15, 2004.
13.Buma P; Pieper JS, v.; an Tienen T; van Susante JL; van der Kraan PM; Veerkamp JH; van den Berg WB; Veth RP; and TH, v. K.: Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects--a study in rabbits. Biomaterials, 19: 3255-63, 2003.
14.Buttner FH, H. C., Margerie D, Lichte A, Tschesche H, Caterson B, BARTNIK E.: Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ''aggrecanase'' and the MMP sites: characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochemical journal, (333): 159-165, 1998.
15.BV, S.; WR, L.; CL, M.; AA, C.; S, C.; and KA, H.: Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum, 40(11): 2065-74, 1997.
16.Chang, C.; Liu, H.; Lin, C.; Chou, C.; and Lin, F.: Gelatin/HA/C6S Tri-copolymer as the scaffold for cartilage tissue engineering. Biomaterials, 24: 4853-4858, 2003.
17.Chinnaiyan AM, O. R. K., Tewai M, Vishva M, and Dixit ADD.: A novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 81: 505-512, 1995.
18.Chou, C.; Cheng, W.; Kuo, T.; Sun, J.; Lin, F.; and Tsai, J.: Fibrin glue mixed with gelatin/hyaluronic acid/ chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: The results of real-time Polymerase Chain Reaction. J Biomed Mater Res A, 82(3): 757-67, 2007.
19.Chou, C.; Cheng, W.; Lin, C.; Chang, C.; Tsai, C.; and Lin, F.: TGF-b1 immobilized tri-co-polymer for articular cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77B(2): 338-348, 2006.
20.Chou, C.; Pei, L.; Chang, D.; Lee, C.; Schumacher, H.; and Liang, M.: Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. J Rheumatol, 21: 302-6, 1994.
21.Clarke, I. C.: ARTICULAR CARTILAGE: A REVIEW AND SCANNING ELECTRON MICROSCOPE STUDY1. The Interterritorial Fibrillar Architecture. J Bone Joint Surg Br, 53B: 732-750, 1971.
22.Cohen, S. B.; Meirisch, C. M.; Wilson, H. A.; and Diduch, D. R.: The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials, 24: 2653-2660, 2003.
23.Dandy, D.: Arthroscopic debridement of the knee for osteoarthritis. Journal of Bone & Joint Surgery- British, 73(6): 877-878, 1991.
24.Dimicco, M.; Kisiday, J.; Gong, H.; and Grodzinsky, A.: Structure of pericellular matrix around agarose-embedded chondrocytes. Osteoarthritis Cartilage., 15(10): 1207-16, 2007.
25.Dinarello, C.: Interleukin-1. Cytokine & Growth Factor Reviews, 8: 253-265, 1997.
26.Dubois CM, R. F., Palaszynski EW, Falk LA, Oppenheim JJ, Keller JR:: Transforming growth factor b is a potent inhibitor of interleukin-1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. The Journal of experimental medicine, 172: 737-744, 1990.
27.Entwistle, J.; Hall, C. L.; and Turley, E. A.: HA receptors: Regulators of signalling to the cytoskeleton. J cell Biochem, 61: 569-577, 1996.
28.Ewwing, J.: Articular Cartilage and Knee Joint Function: Basic science and Arthroscopy. Edited by JA Buckwalter, L. R., and EB Hunziker, 9-25, New York, Raven Press, 1990.
29.Ewwing, J.: Articular Cartilage and Knee Joint Function: Basic science and Arthroscopy. Edited by JA Buckwalter, L. R., and EB Hunziker, 1-18, New York, Raven Press, 1990.
30.Farndale RW, B. D., Barnette AJ.: Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethymethylene blue. Biochim Biophys Acta, (883): 173?177., 1986.
31.Felson, D., and Anderson, J.: Hyaluronate sodium injections for osteoarthritis : hope, hype, and hard truths. Archives of Internal Medicine, 162(3): 245-247, 2002.
32.Felson DT, H. C., et al.: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum: 26-35, 2008.
33.Ficat, R.; Ficat, C.; Gedeon, P.; and Toussaint, J.: Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res, 144: 74-83, 1979.
34.Fortier LA, B. P., Nixon AJ, Mohammed HO: Disparate chondrocyte metabolism in three-dimensional fibrin cultures derived from autogenous or commercially manufactured fibrinogen. Am J Vet Res, 59(4): 514-20, 1998.
35.Fortier LA, N. A., Lust G: Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res, 63: 301?05, 2002.
36.Fosang AJ, L. K., Neame PJ, Murphy G, Knauper V, Tschesche H, Hughes C E, Caterson B, Hardingham TE: Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochemical journal, 304: 347-351, 1994.
37.Fox, S. I.: Human physiology. Edited, 364-375, WCB McGraw Hill, 1999.
38.Fox, S. I.: Human physiology. Edited, 373, WCB McGraw Hill, 1999.
39.Freed, L., and Vunjak-Novakovic, G.: Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnology and Bioengineering, 46(4): 306-313, 1995.
40.Freemont, A.; Hampson, V.; Tilman, R.; Goupille, P.; Taiwo, Y.; and Hoyland, J.: Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann Rheum Dis, 56(9): 542-9, 1997.
41.Frenkel, S., and Cesare, P.: Scaffolds for Articular Cartilage Repair. Annals of Biomedical Engineering, 32(1): 26-34, 2004.
42.Frenkel SR, S. P., Mehrara BJ, Chin GS, Steinbrech DS, Brent B, Gittes GK, Longaker MT.: Transforming Growth Factor Beta Superfamily Members: Role in Cartilage Modeling. Plastic and reconstructive surgery, 105(3): 980-990, 2000.
43.Friedman, M.; Berasi, C.; Fox, J.; Pizzo, W. D.; Snyder, S.; and Ferkel, R.: Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clinical Orthopaedics & Related Research, 182: 200-5, 1984.
44.Fujimoto, T.; Kawashima, H.; Tanaka, T.; Hirose, M.; Toyama-Sorimachi, N.; Matsuzawa, Y.; and Miyasaka, M.: CD44 binds a chondroitin sulfate proteoglycan, aggrecan. Int. Immunol, 13: 359-366, 2001.
45.Furukawa, T.; Eyre, D.; Koide, S.; and Glimcher, M.: Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J bone Joint Surg, 62A: 79-89, 1980.
46.Galois, L. et al.: Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials Payan. Biorheology, 41: 433-443a, 2004.
47.Gao, J.; Yao, J.; and Caplan, A.: Stem cells for tissue engineering of articular cartilage. Proc Inst Mech Eng, 221(5): 441-50, 2007.
48.Gillogly, S.; Voight, M.; and Blackburn, T.: Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. Journal of Orthopaedic & Sports Physical Therapy, 28: 241-51, 1998.
49.Girotto D, U. S., Brun P, Renier D, Barbucci R, Abatangelo G: Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19): 3265-3275, 2003.
50.Goldring, M., and Goldring, S.: Osteoarthritis. J Cell Physiol, 213(3): 626-34, 2007.
51.Grassel, S., and Ahmed, N.: Use of bone marrow mesenchymal stem cells for ex vivo cartilage regeneration. Orthopade, 36(3): 227-35, 2007.
52.Gregg, L., and Voigt, D.: Hematology techniques and concepts for veterinary technicians. Edited, 105, Ames, Iowa State University Press, 2000.
53.Grunder T; Gaissmaier C; Fritz J; Stoop R; Hortschansky P; Mollenhauer J; and WK., A.: Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis & Cartilage, 12(7): 559-567, 2004.
54.Guilak F; Awad HA; Fermor B; Leddy HA; and JM., G.: Adipose-derived adult stem cells for cartilage tissue engineering Biorheology. 41: 389-99, 2004.
55.Gunther M et al.: Transforming growth factor-_1 regulates tissue inhibitor of metalloproteinases-1 expression in differentiated human articular chondrocytes. Arthritis & Rheumatism, 37: 395-405, 1994.
56.Hangody, L.; Feczko, P.; Bartha, L.; Bodo, G.; and Kish, G.: Mosaicplasty for the treatment of articular defects of the knee and ankle. Clinical Orthopaedics & Related Research, 391 Suppl: S328-S336, 2001.
57.Hardingham, T., and Fosang, A.: Proteoglycans: Many forms, many functions. FASEB J, 6: 861-870, 1992.
58.Harvey AK; Hrubey PS; and S., C.: Transforming growth factor-b inhibition of interleukin-1 involves down-regulation of interleukin-1 receptors on chondrocytes. Experimental cell research, 195: 376-385, 1991.
59.Herrero-Beaumont G, I. J., Del Carmen Trabado M, Blanco FJ, Benito P, Martin-Mola E, Paulino J, Marenco JL, Porto A, Laffon A, Araujo D, Figueroa M, Branco J.: Glucosamine sulfate in the treatment of knee osteoarthritis symptoms: A randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator. Arthritis Rheumatology, 55: 555?7, 2007.
60.HOLMES, M. W. A.; BAYLISS, M. T.; and HUIR, H.: Hyaluronic acid in human articular cartilage: age-related changes in content and size. Biochem. J, 250: 435-441, 1998.
61.HOLT RG; COOPER J; DENTON AM; and ., H. S.: CYTOKINE INTER-RELATIONSHIPS AND THEIR ASSOCIATION WITH DISEASE ACTIVITY IN ARTHRITIS. Rheumatology, 31: 725-733, 1992.
62.Hui, W.; Cawston, T.; and Rowan, A.: Transforming growth factor beta 1 and insulin-like growth factor 1 block collagen degradation induced by oncostatin M in combination with tumour necrosis factor alpha from bovine cartilage. Ann Rheum Dis, 62(2): 172-4, 2003.
63.Hui, W.; Rowan, A.; and Cawston, T.: Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-beta1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-alpha. Cytokine & Growth Factor Reviews, 16(1): 31-5, 2001.
64.Hunter, W.: On the structure and diseases of articulating cartilage. Phil Trans, 470: 514-521, 1743.
65.Imhoff, A.; Ottl, G.; Burkart, A.; and Traub, S.: Autologous osteochondral transplantation on various joints. Orthopade, 28(1): 33-44, 1999.
66.Jakob, R.; Franz, T.; Gautier, E.; and Mainil-Varlet, P.: Autologous osteochondral grafting in the knee: indication, results, and reflections. Clinical Orthopaedics & Related Research, 401(170-84), 2002.
67.Janssen, L.; In der Maur, C.; Bos, P.; Hardillo, J.; and van Osch, G.: Short-duration enzymatic treatment promotes integration of a cartilage graft in a defect. Ann Otol Rhinol Laryngol, 115(6): 461-8, 2006.
68.Johnson, L.: Arthroscopic abrasion arthroscopy. Historical and pathologic perspective: present status. Arthroscopy, 2: 54-59, 1986.
69.Johnson-Nurse, C., and Dandy, D.: Fracture-separation of articular cartilage in the adult knee. Journal of Bone & Joint Surgery- British, 67B: 42-43, 1985.
70.Kawasaki, K.; Ochi, M.; Uchio, Y.; Adachi, N.; and Matsusaki, M.: Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. Journal of Cellular Physiology, 179(2): 142-148, 1999.
71.Kim G; Okumura M; Ishiguro T; Kadosawa T; and T, F.: Preventive effect of hyaluronic acid on the suppression of attachment and migration abilities of bovine chondrocytes by IL-1alpha in vitro. Journal of Veterinary Medical Science, 3: 427-430, 2003.
72.Koplas, M.; Schils, J.; and Sundaram, M.: The painful knee: choosing the right imaging test. Cleve Clin J Med, 75(5): 377-84, 2008.
73.Kresse, H.; Hausser, H.; and Schonherr, E.: Small proteoglycans. Experientia, 49(5): 403-16, 1993.
74.Kuo, C. K.; Li, W.; Mauck, R.; and Tuan, R.: Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 18(1): 64-73, 2006.
75.Lane, J. M., and Weiss, C.: Review of articular cartilage collagen research. Arthritis & Rheumatism, 18(6): 553-562, 1975.
76.Lark MW et al.: Aggrecan degradation in human cartilage: evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. Journal of clinical investigation, 100: 93-106, 1997.
77.Levangie, P., and Norkin, C.: Joint structure and function : a comprehensive analysis. Edited, 49-83, FA Davis, 2001.
78.Levangie, P.; Norkin, C.; and Davis, F.: Joint structure and function: a comprehensive analysis. Edited, 49-83, Philadelpha, F.A. Davis, 2001.
79.Lewin, B.: Genes VII. Edited, 868, New York, Oxford University Press Inc, 2000.
80.Lin, Z.; Willers, C.; Xu, J.; and Zheng, M.: The chondrocyte: biology and clinical application. Tissue Eng., 12(7): 1971-84., 2006.
81.Lu, L.; Zhu, X.; Valenzuela, R.; Currier, B.; and Yaszemski, M.: Biodegradable Polymer Scaffolds for Cartilage Tissue Engineering. Clinical Orthopaedics & Related Research, 391 Suppl: S251-S270, 2001.
82.Magne, D.; Vinatier, C.; Julien, M.; Weiss, P.; and Guicheux, J.: Mesenchymal stem cell therapy to rebuild cartilage. Trends Mol Med, 11(11): 519-26, 2005.
83.Maniwa, S.; Ochi, M.; Motomura, T.; Nishikori, T.; Chen, J.; and Naora, H.: Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthopaedica Scandinavica, 72(3): 299-303, 2001.
84.Mankin, H. J.: The response of articular cartilage to mechanical injury. J Bone Joint Surg, 64A: 460-466, 1982.
85.Marlovits S; Hombauer M; Tamandl D; Vecsei V; and W., S.: Quantitative analysis of gene expression in human articular chondrocytes in monolayer culture. International Journal of Molecular Medicine, 13(2): 281-287, 2004.
86.McMahon K, N. M., Jones G.: Treating the symptoms of osteoarthritis-oral treatments. Aust Fam Physician, 37(3): 133-5, 2008.
87.Mercuri, L.: Osteoarthritis, osteoarthrosis, and idiopathic condylar resorption. Oral Maxillofac Surg Clin North Am, 20(2): 169-83, v-vi, 2008.
88.Minas, T.: Autologous chondrocyte implantation for focal chondral defects of the knee. Clinical Orthopaedics & Related Research, 391 Suppl: S349-61, 2001.
89.Mirzayan, R.: Cartilage injury in the athlete. Edited, 73-85, New York, Stuttgart : Thieme, 2006.
90.Morelli, V.; Naquin, C.; and Weave, r. V.: Alternative therapies for traditional disease states: osteoarthritis. American Family Physician, 67(2): 339-344, 2003.
91.Mouw JK; Case ND; Guldberg RE; Plaas AH; and ME., L.: Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis Cartilage, 13: 828?36, 2005.
92.Mow, V. C., and Huiskes, R.: Basic orthopaedic biomechanics & mechano-biology. Edited, 187-191, Philadelphia, Lippincott Williams & Wilkins, 2005.
93.Muir, H.; Bullough, P.; and Maroudas, A.: THE DISTRIBUTION OF COLLAGEN IN HUMAN ARTICULAR CARTILAGE WITH SOME OF ITS PHYSIOLOGICAL IMPLICATIONS. J Bone Joint Surg Br, 52B: 554-563, 1970.
94.Murphy G, K. V.: Relating matrix metalloproteinase structure to function: Why the "hemopexin" domain? Matrix Biology, 15: 511-518, 1997.
95.Nakano, T., and Sim, J. S.-. Glycosaminoglycans from the rooster comb and wattle. Poult Sci, 68(9): 1303-1306, 1989.
96.Nicos, A.: Guidebook to cytokines and their receptors. Edited, 21, New York, Oxford University Press Inc, 1994.
97.NIH. Edited.
98.Nishimoto S, T. M., Wakitani S, Nihira T, Yoshida T: Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. Journal of Bioscience and Bioengineering, 100(1): 123-126, 2005.
99.Nonaka, T.; Kikuchi, H.; Ikeda, T.; Okamoto, Y.; Hamanishi, C.; and Tanak, a. S.: Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis. Journal of Rheumatology, 27(4): 997-1004, 2000.
100.Nordin, M., and Frankel, V.: Basic biomechanics of the Locomotor System. In Biomechanics of articular cartilage, pp. 31-58. Edited by Mow VC, and M, K., 31-58, Philadelphia, Lea and Febiger, 1989.
101.Park, S.; Park, J.; Kim, H.; Song, M.; and Suh, H.: Characterization of porous collagen/ hyaluronic acid scaffold modified by 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials, 23(4): 1205-1212, 2002.
102.Park SH, P. S., Chung SI, Pai KS, Min BH.: Tissue-engineered
cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs, 29: 838?45, 2005.
103.Peretti, G.; Randolph, M.; Villa, M.; Buragas, M.; and Yaremchuk, M.: Cell-based tissue-engineered allogeneic implant for cartilage repair. Tissue Engineering, 6(5): 567-576, 2000.
104.Peretti, G.; Randolph, M.; Zaporojan, V.; Bonassar, L.; Xu, J.; Fellers, J.; and Yaremchuk, M.: A Biomechanical Analysis of an Engineered Cell-Scaffold Implant for Cartilage Repair. Annals of plastic surgery, 46(5): 533-37, 2001.
105.Peretti, G.; Zaporojan, V.; Spangenberg, K.; Randolph, M.; Fellers, J.; and Bonassar, L.: Cell-based bonding of articular cartilage: An extended study. Journal of Biomedical Materials Research Part A, 64(3): 517-524, 2003.
106.Pieper JS; van der Kraan PM; Hafmans T; Kamp J; Buma P; van Susante JL; van den Berg WB; Veerkamp JH; and TH, v. K.: Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials, 15: 3183-92, 2002.
107.Pridie, K.: A method of resurfacing osteoarthritic knee joint. J Bone Joint Surg-British, 41: 618-20, 1959.
108.Robinson, D.; Ash, H.; Nevo, Z.; and Aviezer, D.: Characteristics of cartilage biopsies used for autologous chondrocytes transplantation. Cell Transplantation, 10(2): 203-208, 2001.
109.Ronca, F.; Palmieri, L.; Panicucci, P.; and Ronca, G.: Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage., 6 Suppl A: 14-21, 1998.
110.Rubin, B. R.: Management of Osteoarthritic Knee Pain. J Am Osteopath Assoc, 105(suppl_4): S23-28, 2005.
111.Ruoslahti, E.: RGD and other recognition sequences for integrins. Annual Review of Cell & Developmental Biology, 12: 697-715, 1996.
112.Sahni, A.; Guo, M.; Sahni, S.; and Francis, C.: Interleukin-1b but not IL-1?binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood, 104: 409-414, 2004.
113.Schnabe lM, M. S., Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J: Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage., 10: 62-70, 2002.
114.Scott, W. N.: Surgery of the knee. Edited, 308-310, Philadelphia, Churchill Livingstone/Elsevier, 2006.
115.Sehgal, D., and Vijay, I. K.: A method for the high efficiency of water-soluble carbodiimide-mediated midation. Analytical Biochemistry, 218: 87-91, 1994.
116.Seibel, M.: Dynamics of Bone and Cartilage Metabolism. Edited, 301-317, Academic Press, 1999.
117.Seibel, M.: Dynamics of Bone and Cartilage Metabolism. Edited, 139, Academic Press, 1999.
118.Seibel, M.: Dynamics of Bone and Cartilage Metabolism. Edited, 143-145, Academic Press, 1999.
119.Seibel, M.; Simon, P.; and John, P.: Dynamics of Bone and Cartilage Metabolism. Edited, 59-61, San Diego, Academic Press, 1999.
120.Seibel, M.; Simon, P.; and John, P.: Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications. Edited, 85-96, San Diego, Academic Press, 2006.
121.Silver, F. H.; Wang, M.-C.; and Pins, G. D.: Preparation and use of fibrin glue in surgery. Biomaterials, 16(12): 891-903, 1995.
122.Silverman, P.; Passaretti, D.; Huang, W.; Randolph, M. A.; and Yaremchuk, M.: Injectable tissue-engineered cartilage using a fibrin glue polymer. Plastic and reconstructive surgery, 103: 1809-1818, 1999.
123.Srikanth, V. K.; Fryer, J. L.; Zhai, G.; Winzenberg, T. M.; Hosmer, D.; and Jones, G.: A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society, 13(9): 769-781, 2005.
124.Steadman, J.; Rockey, W.; Singleton, S.; and Briggs, K.: Microfracture technique for full-thickness chondral defects: technique and clinical results. Operative Orthop, 7: 294-299, 1997.
125.Steadman, J.; Rodkey, W.; Briggs, K.; and Rodrigo, J.: The microfracture technique to treat full thickness articular cartilage defects of the knee. Orthopade, 28: 26-32, 1999.
126.Steadman, J.; Rodkey, W.; and Rodrigo, J.: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clinical Orthopaedics & Related Research, 391 Suppl: S362-9, 2001.
127.Stockwell, R. A.: Biology of cartilage cells. Edited, Cambridge, New York : Cambridge University, 1979.
128.Suh, J., and Matthew, H.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21(24): 2589-98, 2000.
129.Swann DA, B. E.: Determination of the hexosamine content of macromolecules with manual and automated techniques using the p-dimethylaminobenzaldehyde reaction. Biochim Biophys Acta, 130: 112-129, 1966.
130.Tognana, E.; Borrione, A.; De Luca, C.; and Pavesio, A.: Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs, 186(2): 97-103, 2007.
131.Towheed, T.; Maxwell, L.; Anastassiades, T.; Shea, B.; Houpt, J.; Robinson, V.; Hochberg, M.; and Wells, G.: Glucosamine therapy for treating osteoarthritis. Cochrane Database of Systematic Reviews, 18(2): CD002946, 2005.
132.Towle, C.; Hung, H.; and Bonassar, L.: Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/ paracrine role in pathogenesis. Osteoarthritis Cartilage, 5: 293-300, 1997.
133.Toyama-Sorimachi, N.; Sorimachi, H.; Tobita, Y.; Kitamura, F.; Yagita, H.; Suzuki, K.; and Miyasaka, M.: A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. J.Biol. Chem, 270: 7437-7444, 1995.
134.Valeri CR, C. J., Loscalzo JT:: he red cell transfusion trigger: has a sin of commission become a sin of omission? Transfusion, 38: 602-610, 1998.
135.Vinazzer, H.: Fibrin sealing: physiologic and biochemical background. Facial Plast surg, 2: 291-295, 1985.
136.Vunjak-Novakovic, G.; Martin, I.; Obradovic, B.; Treppo, S.; Grodzinsky, A. J.; Langer R; and Freed, L.: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 17(1): 130-138, 1999.
137.Vunjak-Novakovic, G.; Obradovic, B.; Martin, I.; Bursac, P.; Langer; and Freed, L.: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog, 14: 193?02, 1998.
138.Vunjak-Novakovic, G.; Obradovic, B.; Martin, I.; Bursac, P.; Langer, R.; and Freed, L.: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnology Progress, 14(2): 193-202, 1998.
139.Wagner, H.: Oper tive Behandlung der Osteochondrosis dissecans des. Kniegelenks.Z Orthop, 98: 333 -335, 1964.
140.Wang, D.; Varghese, S.; Sharma, B.; Strehin, I.; Fermanian, S.; Gorham, J.; Fairbrother, D.; Cascio, B.; and Elisseeff, J.: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater, 6(5): 385-92, 2007.
141.Wang TW, S. J., Wu HC, Huang YC, Lin FH.: Evaluation and biological characterization of bilayer gelatin/chondroitin-6-sulphate/hyaluronic acid membrane. J Biomed Mater Res B Appl Biomater, 82(2): 390-9, 2007.
142.Weiss AP, D. H.: S-100 protein in human cartilage lesions. J Bone Joint Surg, 68: 521?26, 1986.
143.WEISS, C.; ROSENBERG, L.; and HELFET, A. J.: An Ultrastructural Study of Normal Young Adult Human Articular Cartilage. J Bone Joint Surg Am, 50: 663-674, 1968.
144.Whitley CB, R. M., Draper KA, Dutton CM, Neglia JP: Diagnostic test for mucopolysaccharidosis I. Direct method for quantifying excessive urinary glycosaminoglycan excretion. Clin Chem, 35: 374-9, 1989.
145.Williams III, R. J.: Cartilage repair strategies. Edited, 1-12, Totowa, Humana Press Inc, 2007.
146.Wolff DA, S. S., Golberg VM: S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. Journal of Orthopaedic Research, 10: 49-57, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊