跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏強
研究生(外文):Chen, Pai-Chiang
論文名稱:光纖通訊系統及元件特性分析研究
論文名稱(外文):The characteristic investigation of fiber optical communication systems and devices
指導教授:許仕許仕引用關係
口試委員:梁財春施松村
學位類別:碩士
校院名稱:正修科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:極化相依損失光極化控制器極化模態色散極化度光隔離器光耦合器色散補償光纖可調式雷射光源光波極化分析儀
外文關鍵詞:Polarization Modal DispersionPolarization ControllerPolarization Dependent LossDegree of PolarizationIsolatorCouplerDispersion Compensation FiberTunable Laser SourceLightwave Polarization Analyzer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用光波極化分析儀(Lightwave Polarization Analyzer)為主體及可調式雷射光源(Tunable Laser Source)、單模態半導體雷射(Distributed Feed-Back Laser Diode:DFB-LD)與多模態半導體雷射(Fabry-Perot Laser Diode:FP-LD)當作輸入端,其元件包括色散補償光纖(Dispersion Compensation Fiber)、光耦合器(Coupler)、光隔離器(Isolator)及待測元件各種長度的光纖等,量測出極化度(Degree of Polarization:DOP)和極化模態色散(Polarization Modal Dispersion:PMD)與長度有關,長度愈長1550nm波長的F-P雷射極化度由100%漸降低為91%,25、50及75公里光纖的極化模態色散分別是0.4ps、0.8ps和1.2ps表示極化模態色散愈大長度愈長。加上色散補償光纖去量測發現在長波段(L-band:1570 ~ 1610 nm)有色散補償效果,從1585nm波長得知極化模態色散由0.4ps減少到0.1ps。再探討極化相依損失(Polarization Dependent Loss:PDL)對待測元件的特性影響,10/90光耦合器、30/70光耦合器與50/50光耦合器中以30/70光耦合器的極化相依損失約為0.05dB最小;去極化實驗研究出使用主動式元件光極化控制器(Polarization Controller)或者用被動式元件光耦合器組合出來的架構,兩種方法來達到去極化之效果,光極化控制器達到最快轉速8時去極化的極化度60%。光耦合器的組合數目愈多,去極化的弁鈮U明顯,此研究使用到5個光耦合器組合而成的架構,最佳去極化效果達到極化度6.8%。
This study uses Lightwave Polarization Analyzer as the primary apparatus and Tunable Laser Source, Distributed Feed-Back Laser Diode (DFB-LD), and Fabry-Perot Laser Diode (FP-LD) as input sides, of which the components include Dispersion Compensation Fiber, Coupler, Isolator, and fiber optics of different lengths for parts to be tested, for their Degree of Polarization (DOP) and Polarization Modal Dispersion (PMD). It is found that length is a concern; as the length increases, the polarization of FP-LD at 1550nm wavelength decreases from 100% to 91%. The PMDs of 25Km, 50Km and 75Km fiber optics are 0.4ps, 0.8 ps, and 1.2 ps, respectively, suggesting that the higher PMD is, the longer the length is. In addition, when measuring with Dispersion Compensation Fiber, the Dispersion Compensation effect is found in the long wavelength (L-band:1570 ~ 1610 nm) that the PMD decreases from 0.4ps to 0.1ps at 1585nm wavelength. Polarization Dependent Loss (PDL) is also explored for the impact of its features on the parts to be tested. Among the 10/90 coupler, 30/70 coupler, and 50/50 coupler, the 30/70 coupler has the least PDL at 0.05dB. A depolarization experiment achieves depolarization result by using an active Polarization Controller or an assembly of passive couplers. When the polarization controller reaches its maximum rotational speed at 8 rpm, it provides 60% of depolarization. The higher the number of couplers is in the assembly, the higher depolarization is achieved. This study uses an assembly consisting of 5 couplers to achieve the optimal polarization of 6.8%.
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
第二章 原理 3
2.1 色散(Dispersion) 3
2.1.1 極化模態色散(Polarization Modal Dispersion) 9
2.1.2 極化相依損失(Polarization Dependent Loss) 12
2.2 色散補償(Dispersion Compensation) 13
2.3 通訊光源 15
2.4 極化(Polarization) 20
2.5 波因卡球(Poincare Sphere) 23
2.6 去極化(Depolarization) 26
2.7 光耦合器(Coupler) 27
2.7.1 耦合比(Coupler Ratio) 27
2.7.2 方向性(Directivity) 28
2.7.3 過量損失(Excess Loss) 28
2.7.4 插入損失(Insertion Loss) 28
2.7.5 偏極化敏感度(Polarization Sensitivity) 29
2.8 光隔離器(Isolator) 30
第三章 研究與實驗結果 32
3.1 極化度(DOP)量測實驗 32
3.2 光纖長度的極化模態色散(PMD)量測實驗 35
3.3 色散補償光纖的極化模態色散量測實驗 37
3.4 極化相依損失(PDL)量測實驗 39
3.5 主動式元件去極化量測實驗 41
3.6 被動式元件去極化量測實驗 44
3.6.1 各種雷射光源去極化之極化度 45
3.6.2 可調式雷射光源去極化之極化度 46
第四章 結論 50
參考文獻 51
附錄 55
專業名詞中英文對照表 65
[1] 原榮 “光纖通訊系統原理與應用” 新文京開發出版股份有限公司P.102 P.427 (2004)
[2] James N. Downing “光纖通訊” 高立圖書有限公司 P.74 ~ 83, P.294 (2005)
[3] Dennis Derickson, Editor “Fiber Optic Test and Measurement” Hewlett-Packard Company (1998)
[4] 陳俊勳 “環型光纖雷射之研究” 正修科技大學 電子工程所 (2006)
[5] Joseph C. Palais “光纖通訊” 東華書局 (2000)
[6] Dr. Chun-Nan Chen; Dr. Joseph C. Palais “光纖通信與應用” 新文京開發出版股份有限公司 (2004)
[7] Yang Lin “Passive All Single-Mode Delay Fiber-optic Depolarizer On The Communication System, 1250nm ~ 1670nm” 高雄師範大學物理學系 (2007)
[8] Lam, H. Q.; Shum, P.; Binh, L. N.; Gong, Y. D.; Tang, M.; “Dual Orthogonal Polarization States in an Active Mode-Locked Birefringent Fiber Ring Laser” IEEE Photonics Technology Letters, Volume 19, Page(s):635 – 637, (2007)
[9] Guo, L.Q.; Connelly, M.J.; “A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump–Probe Scheme” IEEE Photonics Technology Letters, Volume 25, Page(s):410 – 420, (2007)
[10] Yupapin, P.P.; Suchat, S.; Phiphithirankarn, P.; “Time-Bin Entangled Photons using an all Fiber Optic MZI Incorporating a Fiber Ring Resonator” IEEE Photonics Technology Letters, Page(s):181 – 184, (2007)
[11] Ilyong Yoon; Byoungho Lee; Soo-Jin Park; “The Polarization Changing Speed of the LightDepolarized by a Simple Depolarizer” IEEE Photonics Technology Letters, Volume 25, Page(s):1848 – 1853, (2007)
[12] Nawarathna, D.; Claycomb, J.R.; Cardenas, G.; Vajrala, V.; Warmflash, D.; Gardner, J.; Widger, W.; Miller, J.H.; “SQUID-Based Biosensor for Probing Ion Transporters in Cell Suspensions and Tissue” IEEE Photonics Technology Letters, Volume 17, Page(s):812 – 815, (2007)
[13] Yoon, Shinyoung; Lee, Dong-Soo; Heo, Youngsoon; Lee, Shinwook; Ham, Byoung S.; “Depolarization of External Optical Feedback on VCSEL and Variation of Relative Intensity Noise” IEEE Photonics Technology Letters, Page(s):1 – 2, (2007)
[14] Muga, N. J.; Pinto, A. N.; Ferreira, M. F. S.; “Ferreira da Rocha, J. R.; Uniform Polarization Scattering With Fiber-Coil-Based Polarization Controllers” IEEE Photonics Technology Letters, Volume 24, Page(s):3932 – 3943, (2006)
[15] Y.K. Lize; L. Palmer; M. Aube; N. Godbout; S. Lacroix; R. Kashyap; “Autocorrelation function of the single PC polarization-mode dispersion emulator” IEEE Photonics Technology Letters, Volume 18, Page(s):217 – 219, (2006)
[16] Zhihong Li; Guifang Li; “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier” IEEE Photonics Technology Letters, Volume 18, Page(s):1341 – 1343, (2006)
[17] Oswald, P.; Madsen, C.K.; “Deterministic analysis of endless tuning of polarization controllers” IEEE Photonics Technology Letters, Volume 24, Page(s):2932 – 2939, (2006)
[18] Q. Mao; S. Feng; W. Liu; J.W.Y. Lit; “Bistability-Mapping for L-Band Dual-Wavelength Erbium-Doped Fiber Laser by Using Fiber Loop Mirror With Polarization Controller” IEEE Photonics Technology Letters, Volume 18, Page(s):1973 – 1975, (2006)
[19] Ilyong Yoon; Byoungho Lee; Soojin Park; “A fiber depolarizer using polarization beam splitter loop structure for narrow linewidth light source” IEEE Photonics Technology Letters, Volume 18, Page(s):776 – 778, (2006)
[20] Pierantoni, L.; Massaro, A.; Rozzi, T.; “Analysis of an optical polarizer based on laminated-cover waveguide” IEEE Photonics Technology Letters, Volume 24, Page(s):1414 – 1424, (2006)
[21] Shi, Y.; Yan, L.; Yao, X. S.; “Automatic Maximum–Minimum Search Method for Accurate PDL and DOP Characterization” IEEE Photonics Technology Letters, Volume 24, Page(s):4006 – 4012, (2006)
[22] Lize, Y.K.; Gomma, R.; Kashyap, R.; Palmer, L.; Willner, A.E.; “Low-Cost Polarization Scrambling Using a Single Re-Entrant Polarization Controller” IEEE Photonics Technology Letters, Page(s):779 – 780, (2006)
[23] Young-Geun Han; Sang Bae Lee; “Room-temperature tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing effect in dispersion-shifted fiber” IEEE Photonics Technology Letters, Page(s):3 pp, (2006)
[24] Ying Chen; Qi-Guang Zhu; “A Novel Adaptive PMD Compensation System Based on PSO Algorithm” IEEE Photonics Technology Letters, Page(s):344 – 349, (2006)
[25] Li He,; Yang, Bojun; Zhang, Xiaoguang; Li Yu,; “Multiwavelength Fiber Ring Laser Source Incorporating a Sagnac interferometer” IEEE Photonics Technology Letters, Page(s):1 – 3, (2006)
[26] Ilyong Yoon; Byoungho Lee; Soojin Park; “A fiber depolarizer using polarization beam splitter loop structure for narrow linewidth light source” IEEE Photonics Technology Letters, Volume 18, Page(s):776 – 778, (2006)
[27] Tokura, T.; Kogure, T.; Sugihara, T.; Shimizu, K.; Mizuochi, T.; Motoshima, K.; “Efficient Pump Depolarizer Analysis for Distributed Raman Amplifier With Low Polarization Dependence of Gain” IEEE Photonics Technology Letters, Volume 24, Page(s):3889 – 3896, (2006)
[28] Liu, J.; Fang, Q.; Yin, Y.; Liang, M.; “Passive depolariser based on artificial polarisation-dependent delay” IEEE Photonics Technology Letters, Volume 42, Page(s):412 – 413, (2006)
[29] Jen-Fa Huang; Yao-Tang Chang; Chuan-Ching Sue; Che-Chih Hsu; “Hybrid WDM and Optical CDMA Implemented with M-sequence Coded Waveguide Gratings over Fiber-to-the-Home Network” IEEE Photonics Technology Letters, Page(s):1860 – 1864, (2006)
[30] Yoon, Ilyong; Lee, Byoungho; “The changing speed of polarization due to a simple depolarizer” IEEE Photonics Technology Letters, Page(s):256 – 258, (2006)
[31] Seidel, C.; Trommer, G.F.; “Modelling of bias errors in fibre-optic gyroscopes with advanced simulation tool” IEEE Photonics Technology Letters, Volume 40, Page(s):166 – 167, (2004)
[32] Matar, M.; Bassett, I.M.; Gordon, B.; Haywood, J.H.; Michiel, A.; “An improved lyot fibre depolarizer” IEEE Photonics Technology Letters, Page(s):127 – 130, (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top