跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅敦信
研究生(外文):Tun-Shin Lo
論文名稱:電誘發腦幹聽性反應和電誘發複合活動電位在核式24型人工耳蝸植入兒童電流設定之效益
論文名稱(外文):Efficacy of electrically evoked auditory brainstem response and electrically evoked compound action potential in programming children with the Nucleus-24 Cochlear Implants
指導教授:許權振許權振引用關係
指導教授(外文):Chuan-Jen Hsu
學位類別:碩士
校院名稱:國立台北護理學院
系所名稱:聽語障礙科學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:電誘發腦幹聽性反應電誘發複合活動電位人工耳蝸閾級值舒適級值內耳畸形內耳鈣化
外文關鍵詞:EABRECAPcochlear implantsbehavioral T-levelbehavioral C-levelmalformations of inner earcalcification of inner ear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:724
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:1
許多的研究報告以顯示人工耳蝸植入對語音聽知覺有幫助,而人工耳蝸使用者的行為閾級值和行為舒適級值的設定對於聽知覺表現非常重要,電誘發複合活動電位或電誘發腦幹聽性反應的研究,認為兩者皆可以協助人工耳蝸使用者設定個人的電流調整參數,特別是電刺激下難以準確獲得行為閾級值和舒適級值的嬰幼兒。本研究是透過比較電誘發腦幹聽性反應閾值、電誘發複合活動電位閾值行為閾值級和行為舒適值級,來評估此兩種電誘發反應或電位閾值使用於人工耳蝸核式24植入兒童電流調整的效益。
十七位核式24人工耳蝸使用者參與這項研究,所有個案接受人工耳蝸植入至少一年,透過語言處理機測量行為閾級值和舒適級值,且他們的行為聽覺反應是可信賴的並且已建立穩定的電流圖。以NRT 3.0版本軟體(Nucleus,Australia)記錄電誘發複合活動電位閾值;電誘發腦幹聽性反應閾值運用誘發電位儀器(Bravo, Nicolet, USA)測量。統計乃使用SPSS 10.0軟體,以迴歸模式和配對t檢定分析電誘發複合活動電位閾值、電誘發腦幹聽性反應閾值、行為閾級值和舒適級值之關係。
針對76個可測得行為反應閾值的有效電極,電誘發複合活動電位閾值可在64 %測得,而電誘發腦幹聽性反應閾值有71 %可測得,無法測得電誘發複合活動電位和電誘發腦幹聽性反應的個案,大多數為內耳重度畸形或內耳鈣化,其中四位個案的電誘發複合活動電位和電誘發腦幹聽性反應皆無法測得,如果排除內耳重度畸形或鈣化之個案,電誘發腦幹聽性反應可測得的比例為94.2 %,電誘發複合活動電位為84.6%。電誘發腦幹聽性反應閾值比電誘發複合活動電位閾值平均高6.17個電流單位(current levels),電誘發腦幹聽性反應閾值和電誘發複合活動電位閾值間關聯性呈強度(r = 0.755)並且顯著(p < 0.01),配對t檢定顯示兩者無顯著差異性(p = 0.051)。行為閾級值與電誘發複合活動電位閾值或電誘發腦幹聽性反應閾值為輕度關聯性(分別為r = 0.409, r = 0.304),行為舒適級值與電誘發複合活動電位閾值為中度關聯性(r = 0.61),而行為舒適級值與電誘發腦幹聽性反應為輕度關聯性(r = 0.283)。
行為電流圖與電誘發腦幹聽性反應閾值或電誘發複合活動電位閾值的關聯性不強,然而,電誘發複合活動電位和電誘發腦幹聽性反應,對於嬰幼兒的電流圖設定閾級值和舒適級值還是有用的輔助工具。電誘發腦幹聽性反應可記錄到的比率,比電誘發複合活動電位高,但是,電誘發複合活動電位比電誘發腦幹聽性反應容易記錄且節省時間,電誘發複合活動電位可以作為客觀閾值測量的第一選擇,電誘發腦幹聽性反應測量適合無法測得電誘發複合活動電位之個案。因為電誘發複合活動電位和電誘發腦幹聽性反應在內耳重度畸形或鈣化的個案可測得率低,無法提供對於人工耳蝸植入兒童提供電流調整的訊息。
Several reports have shown the benefit in speech perception of cochlear implants. Determination of behavioral threshold levels (T-levels) and comfort levels (C-levels) of the cochlear implant users is very important for their performance of auditory perception. Either electrically evoked compound action potential (ECAP) or electrically evoked auditory brainstem response (EABR) has been studied to help with optimizing individual’s map parameters of cochlear implant users, particularly young children, in whom accurate behavioral T-levels and C-levels to electrical stimulation are difficult to obtain. The purpose of this study was to evaluate the efficacy of EABR and ECAP in programming children with Nucleus-24 cochlear implants by comparing their thresholds with behavioral T-levels and C-levels.
Seventeen subjects (7 males and 10 females) with Nucleus 24 cochlear implant participated in this study. All subjects have received implantation at least for one year. Behavioral T-level and C-level were measured through the speech processor. Their auditory behavioral responses were reliable and stable MAPs were established. ECAP thresholds were recorded with the NRT 3.0v software (Cochlear, Australia). EABR thresholds were measured with evoked potential technique (Bravo, Nicolet, USA). SPSS 10.0 for Windows (SPSS Inc., Chicago, USA) was used for analysis. Regression models and paired t-tests were used to analyze the correlations between ECAP threshold, EABR threshold, behavioral T-level and C-level.
ECAP thresholds were measured successfully in 64% of active electrodes measured, whereas EABR thresholds were measured in 71%. Unsuccessful recording of ECAP and EABR was observed mostly in subjects either with severe malformations or calcification of inner ear. Both ECAP and EABR could not be measured in four cases. When the subjects with severe malformations or calcification of inner ear were excluded, the rate of successful measurement raised to 94.2 % for EABR and 84.6 % for ECAP, respectively. EABR thresholds were on average 6.17 programming units (current levels) higher than ECAP thresholds. The correlation between EABR and ECAP thresholds was moderate (r = 0.755) and significant (p < 0.01). Paired t-tests revealed no significant difference between EABR and ECAP statistically (p = 0.051). The correlation between behavioral T-levels and ECAP thresholds or EABR thresholds was fair (r = 0.409 and 0.304, respectively). The correlation between behavioral C-levels and ECAP thresholds was moderate (r = 0.61), whereas the correlation between behavioral C-levels and EABR thresholds were fair (r = 0.283).
The correlation between behavioral maps and EABR thresholds or ECAP thresholds is not strong. However, EABR and ECAP can be used as ancillary tools in programming MAP T-levels and C-levels of young children. In general, the rate of successful recording of EABR was higher than that of ECAP. Because recording of ECAP is easier and less time consuming than EABR, ECAP may be the choice of objective measurement. EABR measurement may be preferable for individuals whose ECAP can not be recorded successfully. Because of the very low rate of successful recording in young children either with severe malformations or calcification of inner ear, measurement of EABR and ECAP may not play a role in programming them.
目錄
頁 數
中文摘要 ……….………………………………………………………………..Ⅱ
英文摘要 ……………………………………………………………………… ..Ⅳ
目錄 ……………………………………………………………………………...Ⅶ
表目次 …………………………………………………………………………...Ⅸ
圖目次 …...............................................................................................................Ⅹ
第一章 緒論
第一節 前言 …………………………………………………………………..1
第二節 研究目的 ……………………………………………………………..3
第二章 文獻探討
第一節 人工耳蝸 ……………………………………………………………..5
第二節 人工耳蝸對螺旋神經節的影響 ……………………………………..8
第三節 聲音誘發電位 ………………………………………………………..9
第四節 電誘發電位 ………………………………………………………….10
第五節 電誘發腦幹聽性反應的臨床運用 ………………………………….12
第六節 電誘發複合活動電位的臨床應用 ………………………………….14
第三章 研究方法
第一節 研究個案 …………………………………………………………….19
第二節 研究設計 …………………………………………………………….21
第三節 行為T-levels和行為C-levels量測順序…………………………….22
第四節 電誘發複合活動電位記錄程序 …………………………………….23
第五節 電誘發腦幹聽性反應記錄程序 …………………………………….27
第六節 統計與分析方法 …………………………………………………….30
第四章 研究結果
第一節 個案資料分析結果 …………………………………………………..31
第二節 統計結果分析 ………………………………………………………..38
第五章 討論
第一節 電誘發複合活動電位閾值與行為閾級值和舒適級值 ……………...48
第二節 電誘發腦幹聽性反應閾值與行為閾級值和舒適級值 ……………...49
第三節 臨床上電誘發腦幹聽性反應與電誘發複合活動電位運用的效益 ...51
第六章 結論………..……………………………………………………………...55
參考資料
中文部分 ………………………………………………………………………...56
英文部分 ………………………………………………………………………...57
附錄
附錄一 個案結果記錄表格 ……………………………………………………...67
附錄二 電誘發腦幹聽性反應檢查時間記錄表 ………………………………...73
附錄三 統計分析 ………………………………………………………………...74
表目次
頁 數
表1 受試個案基本資料………..………………………………………………20
表2 電極記錄比較表..………………………………………………………....31
表3 電誘發複合活動電位和電誘發腦幹聽性反應檢查時間間隔…………..32
表4 個案各電極之第五波潛時記錄 ……………………………………..…..37
表5 電誘發腦幹聽性反應與電誘發複合活動電位的閾值差..…………..…..39
表6 電誘發腦幹聽性反應閾值與行為閾級值之相差值…………………..…41
表7 電誘發腦幹聽性反應閾值與行為舒適級值之相差值……………….….42
表8 電誘發複合活動電位閾值與行為閾級值的相差值…..…………………46
表9 電誘發複合活動電位閾值與行為舒適級值的相差值…………………..47
圖目次
頁 數
圖1 電誘發複合活動電位波形 ………………………………………………. 15
圖2 電誘發複合活動電位的記錄方法..………………………………………..16
圖3 各種測量的順序流程圖..…………………………………………………..21
圖4 Nucleus 24 人工耳蝸電誘發複合活動電位檢查設備連接架構圖示.…...24
圖5 透過視覺輔助方式判定電誘發複合活動電位閾值…………..…………..25
圖6 運用外插法的方式判斷電誘發複合活動電位閾值………………………26
圖7 電誘發腦幹聽性反應檢查刺激和記錄說明..……………………………..28
圖8 電誘發腦幹聽性反應之波形..........................……………..………………29
圖9 17位各個行為閾級值、行為舒適級值、電誘發複合活動電位閾值和
電誘發腦幹聽性反應閾值折線圖………………………………………...34
圖10 各個電極之T-level、C-level、ECAP threshold和EABR threshold之
最大值、最小值和平均值………………………………………………...36
圖11 電誘發腦幹聽性反應閾值與電誘發複合活動電位閾值線性迴歸分析
散佈圖……………………………………………………………………...38
圖12 電誘發腦幹聽性反應閾值與行為閾級值與行為舒適級值之線性迴歸分
析散佈圖…………………………………………………………………...40
圖13 電誘發複合活動電位閾值與行為閾級值與行為舒適級值之線性迴歸分
析散佈圖..………………………………………………………………….44
圖14 個案12未出現電誘發腦幹聽性反應之波形…..………………………....50
參考資料
中文部分
許權振、林凱南和洪美枝 (1997)。經由人工電子耳蝸電刺激之誘發性腦幹聽性反應─病例報告。中華民國耳鼻喉科醫學會雜誌,32,695-700。
許權振、林凱南和洪美枝 (2000)。核式24型人工耳蝸使用者之電刺激誘發全神經活動電位。中華民國耳鼻喉科醫學會雜誌,35,107-112。
英文部分
Abbas, P. J. & Brown, C. J. (1991). Electrically evoked auditory brainstem response: Growth of response with current level. Hearing Research, 51, 123-138.
Abbas, P. J., Brown, C. J., Shallop, J.K., Firszt, J. B., Hughes, M. L., Hong, S. H. & Staller, S. J. (1999). Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential. Ear and Hearing, 20, 45-59.
Abbas, P. J., Brown, C. J., Hughes, M. L., Gantz, B. J., Wolaver, A. A., Gervais, J. P. & Hong, S. H. (2000). Electrically evoked compound action potentials recorded from subjects who use the nucleus CI24M device. Annals of Otology, Rhinology and Laryngology, Suppl.185, 6-9.
Allum, J. H. J., Shallop, J. K., Hotz, M. & Pfaltz, C. R. (1990). Characteristics of electrically evoked ‘auditory’ brainstem response elicited with the Nucleus 22-electrode intracochlear implant. Scandinavian Audiology, 19, 263-267.
Aubert, L. R. & Clarke, G. P. (1994). Reliability and predictive value of the electrically evoked auditory brainstem response. British Journal of Audiology, 28 (3), 121-124.
Blatchley, B. J., Williams, J. E. & Coleman, J. R. (1983). Age-dependent effects of acoustic deprivation on spherical cells of the rat anteroventral cochlear nucleus. Experimental Neurology, 80, 81-93.
Brown, C. J., Abbas, P. J., Borland, J. & Bertschy, M. R. (1996). Electrically evoked whole nerve action potentials in Ineraid cochlear implant users: responses to different stimulating electrode configurations and comparison to psychophysical responses. Jouranl of Speech and Hearing Research, 39(3), 453-467.
Brown, C. J., Abbas, P. J., Fryauf-Bertschy, H., Kelsay, D. & Gantz, B. J. (1994). Intraoperative and postoperative electrically evoked auditory brain stem responses in nucleus cochlear implant users: implications for the fitting process. Ear and Hearing, 15(2), 168-176.
Brown, C. J., Abbas, P. J. & Gantz, B. J. (1990). Electrically evoked whole-nerve action potentials: Data from human cochlear implant users. The Journal of the Acoustical Society of America, 88, 1385-1391.
Brown, C. J., Hughes, M. L., Luk B., Abbas, P. J., Wolaver, A. & Gervais, J. (2000). The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear and Hearing, 21(2), 151-163.
Cohen, N. L., Waltzman, S. B., Roland, J. T. Jr., Staller, S. J. & Hoffman, R. A. (1999). Early results using the nucleus CI24M in children. The American Journal of Otology, 20(2), 198-204.
Cohen, L. T., Richardson, L. M., Saunders, E. & Cowan, R. S. (2003). Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking. Hearing Research, 179, 72-87.
Cowan, R. S. C., Dowell, R. C., Clark, G. M. & Clark, G. R. (1997). Cochlear implantation for infants and children (pp.158). San Diego, California: Singular.
Cullen, J. K., Ellis, M. S., Berlin, C. I. & Lousteau, R. J. (1972). Human acoustic nerve action potential recordings from the tympanic membrane without anesthesia. Acta Oto-laryngologica (Stockh), 74, 15-22.
Dawson, P. W., Skok, M. & Clark, G. M. (1997). The effect of loudness imbalance between electrodes in cochlear implant users. Ear and Hearing, 18, 156-165.
Dillier, N., Lai, W. K., Almqvist, B., Frohne, C., Muller-Deile, J., Stecker, M. & von Wallenberg, E. (2002). Measurement of the electrically evoked compound action potential via a neural response telemetry system. Annals of Otology, Rhinology and Laryngology, 111(5 Pt 1), 407-414.
Elberling, C., & Don, M. (1987). Threshold characteristics of the human auditory brain stem response. Journal of the Acoustical Society of America, 81, 115-121.
Ferraro, J. A. & Ruth, R. A. (1994). Electrocochleography. In J. T. Jacobson (Ed.), Principles & applications in auditory evoked potentials (pp. 101-122). Boston: Allyn and Bacon.
Frank, K. H. (2002). A model of a Nucleus 24 cochlear implant fitting protocol based on the electrically evoked whole nerve action potential. Ear and Hearing, 23 (suppl 1), 67s-71s.
Gallégo, S., Frachet, B., Micheyl, C., Truy, E. & Collet, L. (1998). Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalography and Clinical Neurophysiology, 108, 521-525.
Gallégo, S., Micheyl, C., Berger-Vachon, C., Truy, E., Morgon, A. & Collet, L. (1996). Ipsilateral ABR with cochlear implant. Acta Oto-laryngologica (Stockh), 116(2), 228-33.
Gallégo, S., Garnier, S., Micheyl, C., Truy, E., Morgon, A. & Collet, L. (1999). Loudness growth functions and EABR characteristics in Digisonic Cochlear Implantees. Acta Oto-laryngologica (Stockh), 119, 234-238.
Gantz, B. J., Brown, C. J. & Abbas, P. J. (1994). Intraoperative measures of electrically evoked auditory nerve compound action potential. The American Journal of Otology, 15(2), 137-144.
Gordon, K. A., Ebinger, K. A., Gilden, J. E. & Shapiro, W. H. (2002). Neural response telemetry in 12- to 24-month-old children. Annals of Otology, Rhinology and Laryngology, Suppl. 189, 42-48.
Groenen, P. A., Makhdoum, M., van den Brink, J. L., Stollman, M. H., Snik, A. F. & van den Broek, P. (1996). The relation between electric auditory brain stem and cognitive responses and speech perception in cochlear implant users. Acta Oto-laryngologica (Stockh), 116(6), 785-790.
Harris, J. P., Anderson J. P. & Novak, R. (1995). An outcomes study of cochlear implants in deaf patients. Audiologic, economic, and quality-of-life changes. Archives of Otolaryngology-Head and Neck Surgery, 121(4), 398-404.
Hartshorn, D. O., Miller, J. M. & Altschuler, R. A. (1991). Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngology-Head Neck Surgery, 104, 311-319.
Hay-McCutcheon, M. J., Brown, C. J., Clay, K. S. & Seyle, K. (2002). Comparison of electrically evoked whole-nerve action potential and electrically evoked auditory brainstem response thresholds in nucleus CI24R cochlear implant recipients. Journal of American Academy of Audiology, 13(8), 416-427.
Hodge, A.V., Ruth, R. A., Lambert, P. R. & Balkany, T. J. (1994) Electric auditory brain-stem responses in nucleus multichannel cochlear implant users. Archives of Otolaryngology-Head and Neck Surgery, 120(10), 1093-1099.
Hood, L. J. (1998). Clinical applications of the auditory brainstem response. (pp.96)California, San Diego: Singular.
Hsu, C. J., Lin, C. D., Su, Y. J. & Horng, M. J. (1997). Experience in cochlear implantation at the National Taiwan University. Advances in Oto-Rhino-Laryngology. 52, 236-239.
Hsu, C. J., Liu T. C., Lin K.N., Chen, Y. S. & Horng, M. J. (2002). Electrically evoked compound action potentials in cochlear implant users from the National Taiwan University Hospital. In T. Kubo, Y. Takahashi & T. Iwaki (Eds.), Cochlear implants — an update , (pp. 69-72) Hague, Netherlands: Kugler.
Huang, C. Q. & Shepherd, R. K. (2000). Reduction in excitability of the auditory nerve following electrical stimulation at high stimuli rates: V. effects of electrode surface area. Hearing Research, 146, 57-71.
Huang, T. S., Wang, N. M. & Liu, S. Y. (1995). Tone perception of Mandarin-speaking postlingually deaf implantees using the Nucleus 22-Channel Cochlear Mini System. Annals of Otology, Rhinology and Laryngology, Suppl, 166, 294-298.
Hughes, M. L., Brown, C. J., Abbas, P. J., Wolaver, A. A. & Gervais, J. P. (2000). Comparison of EAP thresholds with MAP levels in the Nucleus 24 cochlear implant: data from children. Ear & Hearing, 21, 164-174.
Katz, J. (2002). Handbook of clinical audiology. (pp.740-756). Philadelphia, PA: Lippincott Williams & Wilkins.
Kawano, A., Seldom, H., Clark, G., Ramsden, R. & Riane, C. (1998). Intracochlear factors contributing to psychophysical percepts following cochlear implantation. Acta Oto-laryngologica (Stockh) 118, 313-326.
Ketten, D. R., Skinner, M. W., Wang, G., Vannier, M. W., Gates, G. A. & Neely, J.G. (1998). In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Annals of Otology, Rhinology and Laryngology, Suppl. 175, 1-16.
Kileny, P. R. & Kemink, J. L. (1987). Electrically evoked middle-latency auditory potentials in cochlear implant candidates. Archives of Otolaryngology Head and Neck Surgery, 113(10), 1072-1077.
Kileny, P. R., Zwolan, T. A., Boerst, A. & Telian, S. A. (1997). Electrically evoked auditory potentials: current clinical applications in children with cochlear implants. The American Journal of Otology, (18), S90-S92.
Kraus, N., Micco, A. G., Koch, D. B., McGee, T., Carrell, T., Sharma, A., Wiet, R.J. & Weingarten, C. Z. (1993). The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users. Hearing Research, 65(1-2), 118-24.
Kubo, T., Yamamoto, K., Iwaki, T., Matsukawa, M., Doi, K. & Tamura, M. (2001). Significance of auditory evoked response (EABR and P300) in cochlear implant subjects. Acta Oto-laryngologica (stockh), 121, 257-261.
Lai, W. K. & Norbert, D. (2000). A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiology and Neuro-Otology, 5, 333-345.
Laureano, A. N., McGrandy, M. D. & Campbell, K. C. M. (1995). Comparison of tympanic membrane-recorded electrocochleography and the auditory brainstem response in threshold determination. American Journal of Otolaryngology, 16, 209-215.
Leake, P.A., Hradeck, G. T., Snyder, R. L. & Rebscher, S. J. (1991). Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion cells in neonatally deafened cats. Hearing Research, 54, 251-271.
Lousteau, R. J. (1987). Increased spiral ganglion cell survival in electrically stimulated deafness guinea pig cochleae. Laryngoscope, 97, 836-842.
Luxford, W. M., Berliner, K. I., Eisenberg, M. A. & House, W. F. (1987). Cochlear implants in children. Annals of Otology, Rhinology and Laryngology, 96, 136-138.
Mason, S. M., Cope Y., Garnham, J., O''Donoghue, G. M. & Gibbin, K.P. (2001). Intra-operative recordings of electrically evoked auditory nerve action potentials in young children by use of neural response telemetry with the nucleus C124M cochlear implant. British Journal of Audiology, 35(4), 225-235.
Mason, S. M., Sheppard, S., Garnham, C. W., Lutman, M. E., O’Donoghue, G. M. & Gibbin, K. P. (1993). Application of intraoperative recordings of electrically evoked ABRs in a paediatric cochlear implant programme. Nottingham Paediatric Cochlear Implant Group. Advances in Oto-Rhino-Laryngology, 48, 136-141.
McCormick, B. & Archbold, S. (1994). Cochlear implants for young children: the Nottingham approach to assessment and habilitation. London: Whurr.
Miller, J. M., Altschuler, R. A., Dupont, J., Lesperance, M. & Tucci, D. (1996). Consequences of deafness and electrical stimulation on the auditory system. In R. J. Salvi & D. Henderson (Eds.), Auditory system plasticity and regeneration (pp. 378-391). NewYork: Thieme.
Moore, D. R. & Kowalchuk, N. E. (1988). Auditory brainstem of the ferret: effects unilateral cochlear lesions in cochlear nucleus volume and projections to the inferior colliculus. The Jouranl of Comparative Neurology, 272, 503-515.
Nadol, J., Young, Y. & Glynn, R. (1989). Survival of spiral ganglion cells in profound sensorineural hearing loss: Implication of cochlear implantation. Annals of Otology, Rhinology and Laryngology, 98, 411-416.
Nadol, J., Ketten, D. & Burgess, B. (1994). Otopathology in a case of multichannel cochear implantation. Laryngoscope, 104, 299-303.
Nadol, J. B. Jr. (1997). Pattern of neural degeneration in the human cochlea and auditory nerve: implication of cochlear implantation. Otolaryngology-Head and Neck Surgery, 117, 220-238.
Niparko J. K., Kirk K. I., Mellon, N. K., Robbins, A M, Tucci, D. L. & Wilson, B. S. (2000). Cochlear implants: principle and practices. Philadelphia, East Washington: Lippincott Willianms & Wilkins.
Otte, J., Schuknecht, H.G. & Kerr, A. (1978). Ganglion cell populations in normal and pathological human cochleae: implications for cochlear implantation. Laryngoscope, 88, 1231-1246.
Pelizzone, M., Kasper, K. & Montandon, P. (1989). Electrically evoked response in cochlear implant patients. Audiology, 28, 230-238.
Sanli, H., Gibson, W, P, R. & Birman, C. (2003). Use of electrophysiological tests in decision making for re-implantation. 4th Congress of Asia Pacific Symposium on Cochlear Implant and Relate Sciences (pp.74).
Seyle, K. & Brown, C. J. (2002). Speech perception using maps based on neural response telemetry measure. Ear and Hearing , 23, 72s-79s.
Shallop, J. K., VanDyke, L., Goin, D. W. & Mischke, R. E. (1991). Prediction of behavioral threshold and comfort values for Nucleus 22-channel implant patients from electrical auditory brain stem response test results. Annals of Otology, Rhinology and Laryngology, 100(11), 896-898.
Skinner, M. W., Holden, L. K., Holden, T. A., & Demorest, M. E. (1999). Comparison of two methods for selecting minimum stimulation levels used in programming the Nucleus 22 cochlear implant. Journal of Speech, Language, and Hearing Research, 42, 814-828.
Skinner, M. W., Holden, L. K., Holden, T. A., Demorest, M. E. & Fourakis, M. S. (1997). Speech recognition at stimulated soft, conversational, and raised-to-loud vocal efforts by adults with cochlear implants. Journal of the Acoustical Society of America, 101, 3766-3782.
Starr, A. & Brackmann, D. E. (1979). Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Annals of Otology, Rhinology and Laryngology, 88 (4 Pt 1), 550-556.
Tavartkiladze, G. A., Potalova, L. A., Kruglov, A.V. & Belov, A. (2000). Effect of stimulation parameters on electrically evoked auditory brainstem responses. Acta Otolaryngol (Stockh), 120 (2), 214-217.
Truy, E., Gallego, S., Chanal, J. M., Collet, L. & Morgon, A. (1998). Correlation between electrical auditory brainstem response and perceptual thresholds in Digisonic cochlear implant users. Laryngoscope, 108(4 Pt 1), 554-559.
Tyler, R. S. (1998). Cochlear implants audiological founations. (pp.4-5) San Diego, CA: Singular Publishing Group.
Waltzman, S. B. & Cohen, N. L. (2000). Cochlear implants. New York: Thieme.
Wang, G., Vannier, M. W., Skinner, M. W., Kalender, W. A., Polacin, A., Ketten, D. R. (1996). Unwrapping Cochlear Implants by Spiral CT. IEEE Transaction Bio-medical Engineering, 43(9), 891-900.
Webster, D. B. (1983). Late onset of auditory deprivation does not affect brainstem auditory neuron soma size. Hearing Research, 12, 145-147.
Yamane, H., Marsh, R. R. & Potsic, W. P. (1981). Brain stem response evoked by electrical stimulation of the round window of the guinea pig. Otolaryngology-Head and Neck Surgery, 89 (1), 117-124.
Zimmerling, M. J. & Hochmair, E. S. (2002). EAP recordings in Ineraid patient- correlations with psychophysical measures and possible implications for patient fitting. Ear and Hearing , 23 (2), 81-91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top