跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江松玲
研究生(外文):Song-Lin Jiang
論文名稱:製備高規則二氧化鈦奈米管陣列薄膜電極應用於光電催化法量測水中化學需氧量
論文名稱(外文):Preparation of high orderd TiO2 Nanotube Array Electrode for the Photoelectrocatalysis Determination of Chemical Oxygen Demand
指導教授:林進榮林進榮引用關係
指導教授(外文):Chin-Jung Lin
口試委員:簡淑華侯嘉洪郭明智張章堂
口試日期:2013-05-29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:陽極氧化法二氧化鈦奈米管陣列光電催化法COD
外文關鍵詞:Anodic oxidationTitania nanotube arraysPhotoelectronic catalysisCOD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
化學需氧量(COD)是檢測水中有機污染負荷的重要的指標。傳統的化學檢測方法除了花費長時間的迴流氧化(約2~4個小時),還需具毒性、腐蝕性之化學品(如:重鉻酸鉀、硫酸銀等),可能造成環境二次污染。同時,傳統的化學方法會受到氯離子的干擾且適用的COD範圍窄(約10~220 mg/L)。本研究利用二次陽極氧化法製備出高規則的二氧化鈦奈米管陣列薄膜,將其作為光電催化實驗之電極;並且利用二氧化鈦奈米顆粒及鉑金屬修飾二氧化鈦奈米管陣列,提升材料表面積與活性點。再將上述之TiNT-array系列電極材料經由高溫結晶後和白金片組成一雙極光電催化系統針對不同的有機物做相關性建立,實驗的結果指出以本研究之光電催化系統可量測範圍為0 ~ 500 mg/L;十次重複測量之RSD皆小於5%;偵測極限為1.04 mg/L;長時間材料穩定性之偏差值是± 0.98 mg/L;再採取之實際水樣實驗中,水樣經去氯處理所測得之COD為500 mg/L,但直接以公告方法測量之COD值為251mg/L,低估了約50%,而本研究之方法所測得之COD是445 mg/L,較公告方法準確且不受氯離子干擾。故我們建立出一套快速、準確且無二次污染之COD檢測系統。
Chemical oxygen demand (COD) is an important index for the detection of organic pollutant in water. Traditional chemical detection method needs to reflux a long time under oxidation (about 2 to 4 hours), and toxic, corrosive chemicals (ex. potassium dichromate, silver sulfate, etc.). It may cause secondary pollution in the environment. In addition, Cl- may interference COD detection. Furthermore, the detection range of COD is very norrow and about 10 ~ 220 mg/L with traditional chemical method. In this study, high ordered titanium dioxide nanotube array films were prepared by anodic oxidation. It can work as electrode for the photoelectrocatalytic system. The titanium dioxide nanoparticles and platinum nanoparticles modified titania nanotube arrays were used to enhance the surface area and active of materials. The series of TiNT-array with Platinum were used to make up a photoelectrocatalytic system. The results of experimental show the suitable measuring range is 0 ~ 500 mg/L. Furthermore, the RSD of ten repetition is under 5 % and the detection limit is 1.04 mg/L. The stability of standard deviation is ± 0.98 mg/L. The unknown sample without Cl- is 500 mg/L, but the COD is only 251 mg/L with traditional chemical detection method. when the COD underestimate about 50 %. The COD is 445 mg/L with the photoelectrocatalytic system. It is more accurate and can not be interfered as Cl-. Therefore, the COD detection system was develop fast, accurate, and no secondary pollution.
中文摘要 I
Abstract II
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與內容 4
第二章 文獻回顧 5
2.1 水中化學需氧量 5
2.2 化學需氧量傳統檢測方法 6
2.2.1 重鉻酸鉀迴流法 6
2.2.2 高錳酸鉀法 6
2.3 傳統檢測方法改良 7
2.3.1 微波加熱取代加熱板 7
2.3.2 光譜分析取代滴定 8
2.4 新型檢測方法 8
2.4.1 臭氧氧化法 8
2.4.2電化學法 9
2.4.3光催化法 10
2.4.4光電催化法 12
2.5 一維結構之二氧化鈦奈米管 14
2.6 陽極氧化法 15
2.7 TiO2奈米管陣列應用於光電化學分析 18
第三章 實驗設備與方法 21
3.1實驗藥品與設備 21
3.1.1實驗藥品 21
3.1.2實驗設備 23
3.2複合型態二氧化鈦奈米管陣列薄膜電極製備 24
3.2.1陽極氧化法(Anodization)製備二氧化鈦奈米管陣列薄膜 24
3.2.2二次陽極氧化修飾二氧化鈦奈米管陣列薄膜 24
3.2.3利用真空蒸鍍法將白金鍍於二氧化鈦奈米管陣列薄膜 25
3.2.4 以SILAR法將TiO2顆粒鍍於m-TiNT-array 26
3.3 二氧化鈦奈米顆粒薄膜電極製備 26
3.3.1 二氧化鈦溶膠凝膠之製備 26
3.3.2 利用刮刀成膜法製備TiNP薄膜 27
3.4 樣品特性分析與方法 27
3.4.1 X光粉末繞射儀 (PXRD) 27
3.4.2掃描式電子顯微鏡(FE- SEM) / X光能譜量散佈分析儀 (EDS) 28
3.4.3高解析穿透式電子顯微鏡(HR-TEM) 29
3.5 環保署公告COD檢測方法─密閉迴流滴定法 30
3.5.1 溶液配置 30
3.5.2方法步驟 31
3.5.3 適用範圍 31
3.6 COD標準液與電解液配置 32
3.6.1 COD標準液配置 32
3.6.2 電解液配置 33
3.7 光電催化法量測水中化學需氧量 34
3.7.1光電催化系統 34
3.7.2 連續循環伏安法(Continuous cyclic voltammograms , CVs) 34
3.7.3 光電流分析實驗 35
第四章 結果與討論 37
4.1 二氧化鈦奈米顆粒薄膜 37
4.1.1 場發射掃描電子顯微鏡影像(FESEM) 37
4.1.2 X光粉末繞射儀鑑定(XRD) 37
4.2 二氧化鈦奈米管陣列薄膜 38
4.2.1 場發射掃描電子顯微鏡影像(FESEM) 38
4.2.2 X光粉末繞射儀鑑定(XRD) 40
4.3 表面修飾後之二氧化鈦奈米管陣列薄膜 41
4.3.1 場發射掃描電子顯微鏡影像(FESEM) 41
4.3.2 場發射穿透式電子顯微鏡(FETEM) 44
4.3.3 X光粉末繞射儀鑑定(XRD) 44
4.4 二氧化鈦奈米顆粒修飾m-TiNT-array 46
4.4.1 場發射穿透式電子顯微鏡(FETEM) 46
4.4.2 X光粉末繞射儀鑑定(XRD) 46
4.5 鉑奈米顆粒修飾m-TiNT-array 47
4.5.1 場發射穿透式電子顯微鏡(FETEM) 47
4.5.2 能量散佈儀(Energy Dispersive System ,EDS) 49
4.5.3 X光粉末繞射儀鑑定(XRD) 50
4.6 光電催化分析之最佳實驗參數 51
4.6.1 紫外光(UV)光強度 51
4.6.2 電解質 53
4.6.3 電解液濃度 57
4.6.4 酸鹼值(pH) 61
4.6.5 電壓 62
4.6.6 溶氧的影響 64
4.7 光電催化分析 65
4.7.1 連續循環伏安 65
4.7.2 修飾後材料比較 66
4.7.3 不同電極材料之穩定性 68
4.7.4 不同電極材料之重複性 70
4.7.5 不同電極材料量測之電流與COD值相關性 73
4.7.6 水中氯離子干擾分析 83
4.7.7 實際盲樣測量之準確性 86
第五章 結論與建議 91
5.1 結論 91
5.2 建議 94
參考文獻 95

A Cuesta, J.L. Todoli and A Canals“Flow injection method for the rapid determination of Chemical Oxygen Demand based on microwave digestion and chromium speciation in Flame Atomic Absorption Spectrometry” Spectrochimica Acta Part B, 51, 1791-1800 (1996)
Bing Tan and Yiying Wu “Dye-Sensitized Solar Cells based on anatase TiO2 nanoparticle/nanowire composites” Journal of Physical Chemistry, 110, 15932-15938 (2006)
Baohui Jin, Ying He, Jincan Shen, Zhixia Zhuang, Xiaoru Wang and Frank S. C. Lee “Measurement of Chemical Oxygen Demand (COD) in natural water samples by flow injection ozonation chemiluminescence (FI-CL) technique” Journal of Environmental Monitoring, 6, 673-678 (2004)
Claudineia R. Silva, Cleone D. C. Conceição, Viviane G. Bonifácio, Orlando Fatibello Filho and Marcos F. S. Teixeira “Determination of the Chemical Oxygen Demand (COD) using a copper electrode: a clean alternative method” Journal of Solid State Electrochemistry, 13, 665-669 (2009)
Chen Yu’e, Wu Yinhui, Zhu Lihua, Li Xiurong, Huang Chuixiu, Liu Hongfang and Tang Heqing “Rapid determination of Chemical Oxygen Demand using a nano-TiO2-KMnO4 photocatalytic oxidation system” Chinese Journal of Analytical Chemistry, 34, 1595-1598 (2006)
Damir Brdjanoviic, Mark C.M., Vanloosdrecht, Paull Versteeg, Christine M. Hooijmans, Guy J. Alaers and Joseph J. Heijnen “Modeling COD, N and P removal in a full-scalle wwtp haarlem waaedrpolder” Water Research, 34, 3, 846-858 (2000)
Dong Chao-ping, Zhang Jia-ling, Li Jin-Hua, Chen Hong-Chong and Zhou Bao-xue “A photoelectrocatalytic method using highly ordered TiO2 nanotube Array for determination of surface water” Chinese Journal of Analytical Chemistry, 38, 1227-1230 (2010)
Herbert H. P. Fang and H. K. Chui “Maximum COD losding Capacity in UASB reactors at 37℃”Journal of Environmental Engineering, 119, 103-119 (1993)
Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes “Use of highly-ordered TiO2 nanotube arrays in Dye-Sensitized Solar Cells” Nano Letters, 6, 215-218 (2006)
Hongbin Yu, Hua Wang, Xie Quan, Shuo Chen and Yaobin Zhang “Amperometric determination of Chemical Oxygen Demand using boron-doped diamond (BDD) sensor” Electrochemistry Communications, 9, 2280-2285 (2007)
I. Vyrides and D.C. Stuckey “A modified method for the determination of Chemical Oxygen Demand (COD) for samples with high salinity and low organics” Bioresource Technology, 100, 979-982 (2009)
Jun Li, Tao Tao, Xue-bin Li, Jiao-lan Zuo, Tong Li, Jin Lu, Shu-hui Li, Li-zhen Chen, Chun-yang Xia, Yong Liu and Yan-li Wang “A spectrophotometric method for determination of Chemical Oxygen Demand using home-made reagents” Desalination, 239, 139-145 (2009)
Jialing Zhang, Baoxue Zhou, Qing Zheng, Jinhua Li, Jing Bai, Yanbiao Liu and Weimin Cai “Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array” Water Research, 43, 1886 -1992 (2009)
Juan Bisquert, David Cahen, Gary Hodes, Sven Ru1hle and Arie Zaban “Physical chemical principles of photovoltaic conversion with nanoparticulate, Mesoporous Dye-Sensitized Solar Cells” Journal of Physical Chemistry, 108, 8106-8118 (2004)
Junshui Chen, Jidong Zhang, Yuezhong Xian, Xiangyang Ying,Meichuan Liu and Litong Jin “Preparation and application of TiO2 photocatalytic sensor for Chemical Oxygen Demand determination in water research” Water Research, 39, 1340-1346 (2005)
Jiaqing Li, Lei Zheng, Luoping Li, Guoyue Shi, Yuezhong Xian and Litong Jin“Photoelectro-synergistic catalysis at Ti/TiO2/PbO2 electrode and its application on determination of Chemical Oxygen Demand” Electroanalysis, 18, 2251 – 2256 (2006)
Kyong-Hoon Lee, Tomoko Ishikawa, S.J. McNiven, Yoko Nomura, Atsunori Hiratsuka,Satoshi Sasaki, Yoshiko Arikawa and Isao Karube “Evaluation of Chemical Oxygen Demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode” Analytica Chimica Acta, 398, 161-171 (1999)
K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank “Influence of the percolation network geometry on electron transport in Dye-Sensitized Titanium Dioxide Solar Cells” Journal of Physical Chemistry, 107, 7759-7767 (2003)
Kang Yong Song, Young Tae Kwon, Guang Jin Choi and Wan In Lee “Photocatalytic activity of Cu/TiO2 with oxidation state of surface -loaded copper” Bulletin of the Korean Chemical Society, 20, 957-960 (1999)
Lu Hua, Qu Yun-he, Zhou Tian-shu, Zheng Lei and Shi Guo-yue “Determination of Chemical Oxygen Demand values by photocatalytic oxidation using nano ZnO film on Quartz” Journal of East China Normal University Natural Science, 6, 62-68 (2007)
Liu Bingchuan, Li Jinhua, Zhou Baoxue, Zheng Qing, Bai Jing, Zhang Jialing, Liu Yanbiao and Cai Weimin “Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays” Chinese Journal of Catalysis, 31, 163-170 (2010)
Maggie Paulose, Karthik Shankar, Oomman K Varghese, Gopal K Mor and Craig A Grimes “Application of highly-ordered TiO2 nanotube - arrays in heterojunction dye-sensitized solar cells” Journal Of Physics D: Applied Physics, 39, 2498-2503 (2006)

Min-Jiang Gaoa, Xi-Dong Wanga, Min Guob, Mei Zhangb “Contrast on COD photo-degradation in coking wastewater catalyzed by TiO2 and TiO2-TiO2 nanorod arrays” Catalysis Today, 174, 79-87 (2011)
P. Westbroek and E. Temmerman “In line measurement of Chemical Oxygen Demand by means of multipulse amperometry at a rotating Pt ring - Pt/PbO2 disc electrode” Analytica Chimica Acta, 437, 95-105 (2001)
Qing Zheng, Baoxue Zhou, Jing Bai, Longhai Li, Zhujing Jin, Jialing Zhang, Jinhua Li, Yanbiao Liu, Weimin Cai and Xinyuan Zhu “Self - organized TiO2 nanotube array sensor for the determination of Chemical Oxygen Demand” Advanced Materials, 20, 1044-1049 (2008)
Qinghui Mu, Yaogang Li, Qinghong Zhang and Hongzhi Wang “TiO2 nanofibers fixed in a microfluidic device for rapid determination of Chemical Oxygen Demand via photoelectrocatalysis” Sensors and Actuators B, 155, 804-809 (2011)
Rajeev Jain and Shalini Sikarwar “Photodestruction and COD removal of toxic dye erioglaucine by TiO2-UV process: influence of operational parameters” Journal of Physical Sciences, 3, 299-305 (2008)
Shanqing Zhang, Huijun Zhao, Dianlu Jiang and Richard John “Photoelectrochemical determination of Chemical Oxygen Demand based on an exhaustive degradation model in a thin-layer cell” Analytica Chimica Acta, 514, 89-97 (2004)
Shiyun Ai, Mengnan Gao, Ya Yang, Jiaqing Li and Litong Jin “Electrocatalytic sensor for the determination of Chemical Oxygen Demand using a lead dioxide modified electrode” Electroanalysis, 16, 404-409 (2004)
Shanqing Zhang, Dianlu Jiang and Huijun Zhao “Development of Chemical Oxygen Demand on-Line monitoring system based on a photoelectrochemical degradation principle” Environmental Science & Technology, 40, 2363-2368 (2006)
Shanqing Zhang, Lihong Li, Huijun Zhao and Guiying Li “A portable miniature UV-LED-based photoelectrochemical system for determination of Chemical Oxygen Demand in wastewater” Sensors and Actuators B, 141, 634-640 (2009)
Sujun Yuan, Ruiyi Mao, Yaogang Li, Qinghong Zhang and Hongzhi Wang “Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of Chemical Oxygen Demand” Electrochimica Acta, 60, 347-353 (2012)
Wen Shuyao, Ma Zhanqing, Gao Xiaofei and Wang Xiaolan “On severl aspects of COD determination with potassium dichromate method and its improvement progress” Experimental Technology and Management, 27, 43-46 (2010)
Xiao Qu, Min Tian, Shuai Chen, Baoqiang Liao and Aicheng Chen “Determination of Chemical Oxygen Demand based on novel photoelectro-bifunctional electrodes” Electroanalysis, 23, 1267-1275 (2011)
Yu. M. Dedkov, O. V. Elizarova, and S. Yu. Kei'ina “Dichromate method for the determination of Chemical Oxygen Demand,” Journal of Analytical Chemisto, 55, 777-781 (2000).
Yoon-Chang Kim, Satoshi Sasaki, Kazuyoshi Yano, Kazunori Ikebukuro, Kazuhito Hashimoto and Isao Karube “Photocatal’ytic sensor for the determination of Chemical Oxygen Demand using flow injection analysis” Analytica Chimica Acta, 432, 59-66 (2001)
Yonggang Hu, Zeyu Yang, “A simple chemiluminescence method for determination of Chemical Oxygen Demand values in water” Talanta, 63, 521-526 (2004)
Yoshinori Ohsaki, Naruhiko Masaki, Takayuki Kitamura, Yuji Wada, Takumi Okamoto, Toru Sekino, Kohichi Niihara and Shozo Yanagida “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization” Physical Chemistry Chemical Physics, 7, 4157-4163 (2005)
Yoon-Chang Kim, Kyong-Hoon Lee, Satoshi Sasaki, Kazuhito Hashimoto, Kazunori Ikebukuro and Isao Karube “Photocatalytic sensor for Chemical Oxygen Demand determination based on oxygen electrode” Analytical Chemistry, 72, 3379-3382 (2000)
Zhao Lihua, Gong Shiqiong, Zhu Lihua and Yang Peng “Determining COD by using nanometer TiO2-KMnO4 photocatalysis oxidation technology : a college chemical compprehenaive experiment” Experimental Technology and Management., 27, 34-36 (2010)
Zheng Q, Han H B and Zhou B X “Progress in new methods for rapid determination of Chemical Oxygen Demand (COD).” Chinese Science Bulletin, 54, 3241-3250 (2009)
徐貴新著,水質分析實驗,六版修訂,高立圖書,中華民國94年。
中華民國環保署環境檢驗所網站檢測方法彙http://wq.epa.gov.tw/WQEPA/Code/Business/ItemMethod.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊