跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江崇豪
研究生(外文):Chung-hao Chiang
論文名稱:熱退火對有機高分子太陽能電池混摻二氧化鈦奈米粒子之影響
論文名稱(外文):Post-annealing Temperature Effects of blending titanium dioxide nanoparticles on P3HT:PCBM polymer solar cells
指導教授:盧陽明盧陽明引用關係
指導教授(外文):Yang-ming Lu
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:有機高分子太陽能電池二氧化鈦奈米粒子熱退火後處理
外文關鍵詞:Polymer solar cellsTiO2 nanoparticlesmorphol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
於本篇論文研究中,吾人將無機金屬氧化物二氧化鈦奈米粒子混摻於poly(3-hexylthiophene-2,5-diyl)(P3HT)與C60衍生物 [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)以重量比1:1混合而成的高分子主動層中,二氧化鈦奈米粒子具有高電子傳導性質及高表面積,因而常被應用於無機-有機摻混(hybrid)有機太陽能電池。而本研究先探討熱退火後處理(post-treatment annealing)對於高分子太陽能電池之影響,找出最適當的熱退火後處理溫度。然後再針對摻混二氧化鈦奈米粒子對於有機高分子太陽能電池之效能影響作探討,並更進一步做熱退火後處理,比較有無摻混二氧化鈦奈米粒子在經過熱退火後處理後之效益。
而結果顯示,在未經熱退火後處理前,摻混二氧化鈦奈米粒子之有機高分子太陽能電池雖然其光電轉換效率並沒有太大之變化,但是可以增進主動層薄膜之形貌且短路電流密度(Jsc)有獲得些微提升之趨勢;而在經過熱退火後處理之後,有摻混二氧化鈦奈米粒子之元件,其光電轉換效率從2.75提升至3.12%,表示摻混二氧化鈦奈米粒子的確可以增進有機高分子太陽能電池之元件特性。
Poly(3-hexylthiophene) (P3HT) is a promising candidate for polymer solar cells research due to its good absorbance and stability. In this manuscript, we report polymer solar cells based on P3HT: [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) 1:1 weight ratio blend. We have doped TiO2 nanoparticles to improve the performance of polymer solar cells based on P3HT:PCBM. The morphology of polymer solar cell was improved due to the additional of TiO2 nanoparticles. The effects of thermal annealing on the solar cell as with and without TiO2 nanoparticles blending were studied respectively. Post-treatment annealing shows significant improvement in performance for both addition TiO2 nanoparticles or without them. Optimization the thermal annealing condition and the amount of TiO2 nanoparticles, a solar cell with high short-circuit current density 8.44 mA/cm2 was obtained. The efficiency of the photovoltaic device was improved from 1.2% to 3.1% after post-annealing with doping TiO2 nanoparticles in the active layer of polymer solar cell.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1再生能源之重要性 1
1.2 太陽光頻譜照度 2
1.3 太陽能電池簡介 4
1.3.1 無機太陽能電池 4
1.3.2 有機太陽能電池發展潛力 5
1.4 常用於製作有機高分子太陽能電池之材料 8
1.5 研究動機 9
第二章 文獻回顧 11
2.1 共軛高分子太陽能電池工作原理 11
2.2 共軛高分子太陽能電池之特性分析 14
2.2.1 開路電壓(Open Circuit Voltage, Voc) 15
2.2.2 短路電流(Short Circuit Current, Isc) 18
2.2.3 填充因子 19
2.3 共軛高分子太陽能電池之發展演進 21
2.3.1 單層結構(single layer architecture) 21
2.3.2 電子予體/受體雙層異質接面結構(Bilayer heterojunction architecture) 21
2.3.3 電子予體/受體混摻總體異質接面結構(bulk-heterojunction architecture) 24
第三章 實驗方法與步驟 32
3.1 實驗藥品及儀器 32
3.1.1 藥品 32
3.1.2 實驗儀器 34
3.2 主動層溶液配製 34
3.2.1 主動層材料 34
3.2.2 主動層溶液配製 35
3.3 有機高分子太陽能電池元件製備 36
3.3.1 蝕刻與清洗ITO玻璃 36
3.3.2 UV ozone處理 36
3.3.3電洞傳輸層PEDOT:PSS(AI4083)旋轉塗佈 36
3.3.4主動層旋轉塗佈 37
3.3.5蒸鍍電極 37
3.3.6熱退火後處理 38
3.3.7元件量測 38
3.4分析儀器與原理 40
3.4.1太陽光模擬器(Solar simulator)量測分析 40
3.4.2 主動層穿透式電子顯微鏡(TEM)影像分析 40
3.4.3 能量分散光譜儀(Energy Dispersive X-ray)分析 41
3.4.4 表面粗度儀(Alpha-Step Profilometer, α-step) 41
3.4.5 主動層紫外光-可見光(UV-Vis)吸收光譜分析 42
3.4.6 外部量子效率量測(External quantum efficiency, EQE) 42
3.4.7 原子力顯微探測儀(Atomic Force Microscope, AFM) 42
第四章 結果與討論 44
4.1 熱退火溫度對於有機高分子太陽能電池之影響 44
4.1.1 紫外-可見光吸收光譜 44
4.1.2 原子力顯微儀 48
4.1.3 外部量子效率 51
4-1-4 有機高分子太陽能元件特性-熱退火後處理溫度之影響 52
4-1-5 有機高分子太陽能元件特性-熱退火後處理持溫時間之影響 55
4.2摻混二氧化鈦奈米粒子對於有機高分子太陽能電池之影響 57
4.2.1 穿透電子顯微鏡(TEM)與能量分散光譜儀(EDX) 57
4.2.2 紫外-可見光吸收光譜 60
4.2.3 原子力顯微儀 63
4.2.4 外部量子效率 65
4.2.5 摻混二氧化鈦奈米粒子之有機高分子太陽能元件特性 67
第五章 結論 70
參考文獻 71
[1]S. J. Fonash, “SOLAR CELL DEVICE PHYSICS”, ACADEMIC PRESS, 2nd ed., 2010
[2]L. Tsakalakos, “Nanotechnology for photovoltaics”, CRC Press, 2010.
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, ”Solar cell efficiency tables (version 39)”, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 20:12–20, 2012.
[4]K. Kalyanasundaram, “Dye-sensitized solar cells” , CRC Press, 2010.
[5] L.L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden, CO ,9 February 2012.
[6]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency”, Adv. Mater., 18, 789-794, 2006.
[7]林昇志,量子點的組裝及其在染料敏化太陽能電池的應用,國立成功大學化學工程學系碩士論文.
[8]D.M. Chapin, C. S. Fuller, G. L. Pearson*, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, 25, 676, 1954.
[9]M.A. Green, “Third Generation Photovoltaics:Advanced Solar Energy Conversion”, Springer, 2005.
[10] Siemens, “Photons from Flexible Plastics”,www.siemens.com, Spring 2005
[11]Konarka Plastic Power, ” Konarka Technologies Advances Award Winning Power Plastic Solar Cell Efficiency with 9% Certification”, http://www.konarka.com/, Feb. 28, 2012
[12]A. J. Heeger, N. S. Sariciftci, E. B. Namdas, “Semiconducting and Metallic Polymers, 1st Edition”, Oxford University, 2010.
[13]F. C. Krebs, “Polymer photovoltaic: a practical approach”, SPIE, 2008.
[14]H.H. Lo, “Study on photocurrent properties of organic hybrid solar cell based on poly(3-hexylthiophene) and TiO2 nanorods”, Master Thesis, NTU, 2007.
[15] M. T. Dang , L. Hirsch , and G. Wantz *, “P3HT:PCBM, Best Seller in Polymer Photovoltaic Research”, Adv. Mater., 23, 3597-3602, 2011.
[16]J. Y. Kim, K. Lee*, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science, 317, 2007.
[17]A. Moliton*, J. M. Nunzi, “How to Model the Behavior of Organic Photovoltaic Cells”, Polymer Int., 55, 583-600, 2006.
[18] J. J. Dittmer, E. A. Marseglia, R. H. Friend, ”Electron Trapping in Dye/Polymer Blend Photovoltaic Cells”, Adv. Mater., 17, 1270 , 2000.
[19] P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126, 2001.
[20] H. Hoppe, N. S. Sariciftci, “Organic solar cells:an overview”, J. Mater. Res., 19, 1924, 2004.
[21] J. Y. Kim, A. J. Bard, “Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide”, Chem. Phys. Lett., 383, 11, 2004.
[22]C. J. Brabec*, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells”, Appl. Phys. Lett., 80, 1288- 1290, 2002
[23]W. Cai, X. Gong, Y. Cao,”Polymer Solar Cells: Recent Development and Possible Routes for Improvement of Power Conversion Efficiency”, Solar Energy Materials & Solar Cells, 94,114, 2010.
[24]S. Günes*, H. Neugebauer, N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells”, Chem. Rev., 107, 1324-1338, 2007.
[25]I. D. Parker*, “Carrier Tunneling and Device Characteristics in Polymer Light- Emitting Diodes”, J. Appl. Phys., 75, 1656-1666, 1993
[26]C. J. Brabec*, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Adv. Funct. Mater., 11, 374-380, 2001.
[27]G. G. Malliaras*, J. R. Salem, P. J. Brock, and J. C. Scott, “Photovoltaic Measurement of the Built-In Potential in Organic Light Emitting Diodes and Photodiodes”, J. Appl. Phys., 84, 1583-1587, 1998.
[28]J. Liu, Y. Shi, Y. Yang*, “Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices”, Adv. Funct. Mater., 11, 420-424, 2001
[29]C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, C. J. Brabec*, “Physics of Organic Bulk Heterojunction Devices for Photovoltaic Applications”, J. Appl. Phys., 99, 104503-1-104503-6, 2006.
[30] A. K. Ghosh, T. Feng, “Merocyanine organic solar cells”, J.Appl, Phys,49, 5982- 5989, 1978.
[31]G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64(12), 1994.
[32]C. W. Tang*, ”Two-Layer Organic Photovoltaic Cell”, Appl. Phys. Lett., 48, 183-185, 1986.
[33]N. S. Sariciftci*, L. Smilowitz, A. J. Heeger*, F. Wudi, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, SCIENCE, 258, 1474-1476, 1992
[34] R. A. J. Janssen, J. C. Hummelen, N. S. Saricftci, ”Polymer-fullerene bulk heterojunction solar cells”, MRS Bull., 30, 33, 2005.
[35]P. Peumans, A. Yakimov, S. R. Forrest*, “Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells”, J. Appl. Phys., 93, 3693-3723, 2003.
[36]J. J. M. Halls, K. Pichler, R. H. Friend*, S. C. Moratti, and A. B. Holmes, “Exciton Diffusion and Dissociation in a Poly(pphenylenevinylene)/C60 Heterojunction Photovoltaic Cell”, Appl. Phys. Lett., 68, 3120-3122, 1996.
[37]S. A. Jenekhe and S. Yi*, “Efficient Photovoltaic Cells from Semiconducting Polymer Heterojunctions”, Appl. Phys. Lett., 77, 2635-2637, 2000.
[38]G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity”, Appl. Phys. Lett., 64, 3422, 1994.
[39] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives”, J. Org. Chem., 60, 532(1995).
[40] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A.J. Heeger, “Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, SCIENCE, 270, 1789, 1995.
[41]S. E. Shaheen, C. J. Brabec*, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells”, Appl. Phys. Lett., 78, 841-843, 2001.
[42]F. Padinger*, R. S. Rittberger, N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells”, Adv. Funct. Mater., 13, 85-88, 2003
[43]G. Li, V. Shrotriya, Y. Yao, and Y. Yang*, “Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells Based on poly(3-hexylthiophene)”, J. Appl. Phys., 98, 043704, 2005.
[44]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger*, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater., 15, 1617-1622, 2005.
[45] Solarmer Energy, “ Breaks Psychological Barrier with 8.13% OPV Efficiency”,www.solarmer.com, July 2010
[46] K. Kim, D. L. Carroll, “Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic device”, Appl. Phys. Lett., 87, 203113, 2005
[47] M. Y. Chang, Y. F. Chen, Y. S. Tsai, K. M. Chi, “Blending Platinum Nanoparticles into Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric Acid Methyl Ester Enhances the Efficiency of Polymer Solar Cells”, Journal of The Electrochemical Society, 156 , B234, 2009.
[48] J.L. Wu, F.C. Chen*, Y.S. Hsiao, F.C. Chien, P. Chen, C.H. Kuo, M. H. Huang, and C.S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells”, ACS nano, 5, 959-967, 2011.
[49]A. J. Morfa, K. L. Rowlen, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”, Appl. Phys. Lett., 92, 013504, 2008.
[50]W. J. Yoon, K. Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, P. R. Berger, “Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles”, Solar Energy Materials & Solar Cells, 94, 128, 2010.
[51]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”, Science, 295, 2425, 2002.
[52] B. Sun and N. C. Greenham, “Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers”, Phys. Chem. Chem. Phys., 8, 3557-3560, 2006.
[53] B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, N. C. Greenham, “Vertically segregated hybrid blends for photovoltaic devices with improved efficiency”, J. Appl. Phys., 97, 014941, 2005.
[54]W. J. E. Beek, M. M. Wienk, R. A. J. Janssen*, “Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer”, Adv. Mater., 16, 1009-1013, 2004.
[55] W. J. E. Beek, M. M. Wienk,M. Kemerinl, X. Yang, R. A. J. Janssen*,”Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells”, J. Phys. Chme. B, 109, 9505-9516, 2005.
[56] F. Li, Y. Du, Y. Chen, L. Chen, J. Zhao, P. Wang, “Direct application of P3HT-DOPO@ZnO nanocomposites in hybrid bulk heterojunction solar cells via grafting P3HT onto ZnO nanoparticles”, Solar Energy Materials & Solar Cells,97, 64-70, 2012.
[57] C. Y. Kwong, A. B. Djurišić, P. C. Chui, K. W. Cheng, W. K. Chan, “Influence of solvent on film morphology and device performance of poly(3-hexylthiophene): TiO2 nanocomposite solar cells”, Chem. Phys. Lett., 384 , 372, 2004.
[58]T.W. Zeng, Y.Y. Lin, H.H. Lo, C.W. Cheg*, C.H. Cheng, S.C. Liou, H.Y. Huang, W.F. Su*, “A Large Interconnecting Network Within Hybrid MEH-PPV/TiO2 Nanorod Photovoltaic Devices”, Nanotechnology, 17, 5387-5392, 2006.
[59] S.S. Li, C.P. Chang, C.C. Lin, Y.Y. Lin, C.H. Chang, J.R. Yang, M.W. Chu, and C.W. Chen, “Interplay of Three-Dimensional Morphologies and Photocarrier Dynamics of Polymer/TiO2 Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc., 133, 11614-11620, 2011.
[60]S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nat. Mater., 4, 138, 2005.
[61] D. Qi, M. Fischbein, M. Drndic, S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors”, Appl. Phys. Lett., 86, 093103, 2005.
[62] E. Arici, N.S. Sariciftci, D. Meissner, “Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices”, Adv. Funct. Mater., 13, 165, 2003.
[63]J. Bouclé, P. Ravirajan, J. Nelson*, “Hybrid Polymer-Metal Oxide Thin Films for Photovoltaic Applications”, J. Mater. Chem., 17, 1-14, 2007.
[64]N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel*, “Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films”, J. Am. Chem. Soc., 110, 1216-1220, 1988.
[65]T. J. Savenije*, J. M. Warman, A. Goossens, “Visible Light Sensitisation of Titanium Dioxide Using a Phenylene Vinylene Polymer”, Chem. Phys. Lett., 287. 148-153, 1998.
[66]P. A. V. Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, R. A. J. Janssen*, “Photoinduced Electron Transfer from Conjugated Polymers to TiO2”, J. Phys. Chem. B, 103, 4352-4359, 1999.
[67]P. Ravirajan*, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, J. Nelson, “Hybrid nanocrystalline TiO2 Solar Cells with a Fluorene-Thiophene Copolymer as a Sensitizer and Hole Conductor”, J. Appl. Phys., 95, 1473-1480, 2004.
[68] Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cell”, Adv. Funct. Mater., 18, 1783, 2008.
[69] V. Shrotriya, J. Quyang, R. J. Tseng, G. Li and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin film”, Chem. Phys. Lett, 411, 138-143, 2005.
[70] D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites”, Nanotechnology, 15, 1317-1323, 2004.
[71] Y. kim, S. A. Choulis, J. Nelson and D.C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Appl. Phys. Lett., 86, 063502-1, 2005.
[72] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, ”High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., 4, 864-869, 2005.
[73] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes”, J. Appl. Phys., 93, 6159, 2003.
[74] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens,“Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J.Appl, Phys., 94, 6849-6854, 2003.
[75] X.G. Chin, “Efficiency Enhancement of Polymer/Fullerene Bulk- Heterojunction Solar Cell by Blending TiO2 Nanoparticles into Photo-active Materials”, Master Thesis, NCKU, 2006.
[76] J. Szeremeta, M. Nyk, A. Chyla, W. Strek, M. Samoc, “Enhancement of photoconduction in a conjugated polymer through doping with copper nanoparticles”, Optical Materials, 1372, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top