跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂本堯
研究生(外文):Pen Yao Lu
論文名稱:里德所羅門碼與區塊渦輪碼解碼演算法之研究
論文名稱(外文):The Study of the Decoding Algorithms for Reed-Solomon Codes and Block Turbo Codes
指導教授:盧而輝
指導教授(外文):E. H. Lu
學位類別:博士
校院名稱:長庚大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:83
中文關鍵詞:里德所羅門碼抹除解碼區塊渦輪碼外部資訊疊代解碼
外文關鍵詞:Reed-Solomon (RS) codeserasure decodingblock turbo codes (BTCs)extrinsic informationiterative decoding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Contents
指導教授推薦書.........................................
口試委員審定書........................................
誌謝.................................................iii
中文摘要..............................................iv
英文摘要..............................................v
Contents.............................................vi
Tables of Contents...................................viii
Figures of Contents..................................ix
Chapter 1 Introduction..............................1
1.1 Communication Systems............................1
1.2 Background.......................................4
1.3 Synopsis of Dissertation.........................7
Chapter 2 Reviews....................................9
2.1 Reed-Solomon Codes...............................9
2.2 Product Codes...................................16
2.3 Chase Decoding Algorithm........................19
2.3.1 Soft-Decision Decoding (SDD) of Linear Block Codes.........19
2.3.2 Chase Decoding Algorithm......................21
2.4 Block Turbo Codes...............................24
Chapter 3 Proposed Method for Correcting Both Errors and Erasures of Reed-Solomon Codes...............................................28
3.1 Introduction....................................28
3.2 Proposed Decoding Scheme........................30
3.3 Discussion......................................36
Chapter 4 Methods for Evaluating Error Magnitudes of Reed-Solomon Codes...37
4.1 Introduction....................................37
4.2 Proposed Method for Evaluating Error Magnitudes of Reed-Solomon Codes.......39
4.3 Complexity Comparisons..........................47
4.3.1 Complexity of Forney's Method.................47
4.3.2 Complexity of Komo-Joiner Algorithm...........49
4.3.3 Comparisons...................................50
4.4 Discussion......................................52
Chapter 5 Efficient Hybrid Block Turbo Code decoders....53
5.1 Introduction....................................53
5.2 Review of the AGS Hybrid Block Turbo Decoders...55
5.3 Proposed Efficient Hybrid BTC Decoders..........57
5.4 Simulation Results and Discussion...............62
5.4.1 Selection of δ and BER Performance Comparison............................ 62
5.4.2 Reduction in HDDs and Arithmetic Operations..63
Chapter 6 Conclusions................................67
References...........................................69

Tables of Contents

Table 4.1 Computational Complexities of the Proposed Method for Evaluating v Error Magnitudes............................................46
Table 4.2 Comparisons of Computational Complexity of the Proposed Method with Forney's Method and Komo-Joiner Algorithm......................51

Figures of Contents

Fig. 1.1 Block Diagram of a Communication System........2
Fig. 2.1 An Encoding Circuit for an (n,k) RS Codes......11
Fig. 2.2 Structure of Turbo Product Codeword............17
Fig. 2.3 Block Diagram of a BTC Decoder.................27
Fig. 5.1 BER versus Eb/N0 of the Proposed Hybrid BTC Decoders for eBCH(64,51,6)2 with Different Values of δ....................................65
Fig. 5.2 BER versus Eb/N0 of the Proposed Hybrid Decoder for Different BTCs.....................................................65
Fig. 5.3 RHDD versus Eb/N0 for Different BTCs............66
Fig. 5.4 RAO versus Eb/No for Different BTCs.............66

References
[1] C. E. Shannon, “A mathematical theory of communication,” in Bell Sys. Tech. J.,
vol. 27, pp. 379–423, July and pp. 623–656, Oct. 1948.
[2] I. S. Reed and G. Solomon, “Polynomial codes over certain fields,” J. Soc. In
Appl. Math, 8: 300-304, June 1960.
[3] D. Gorenstein and N. Zierler, “A class of cyclic linear error-correcting codes in
p^m symbols,” J. Soc. Ind. Appl. Math, 9: 107-214, June 1961.
[4] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Pearson Internation
Edition, 2004.
[5] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.
[6] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inform.
Theory, vol. IT-15, pp. 122–127, 1969.
[7] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for solving key
equation for decoding Goppa codes,” Inform. Contr., vol. 27, pp. 87–99, 1975.
[8] L. R. Welch and R. A. Scholtz, “Continued fractions and Berlekamp’s algorithm,”
IEEE Trans. Inform. Theory, vol. IT-25, pp. 19–27, 1979.
[9] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-free Berlekamp–
Massey algorithm,” Proc. Inst. Elect. Eng. pt. E, vol. 138, pp. 295–298, Sept. 1991.
[10]G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform.
Theory, IT-12: 125-131, April 1966.
[11]B. G. Dorsch, “A decoding algorithm for binary block codes and J-ary output
channels,” IEEE Trans. Inform. Theory, IT-20: 391-394, May 1974.
[12]Y. S. Han, C. R. P. Hartmann, and C. C. Chen, “Efficient priority-first search
maximum-likelihood soft-decision decoding of linear block codes,” IEEE Trans.
Inform. Theory, IT-39: 1514-1523, September 1993.
[13]M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on
ordered statistics,” IEEE Trans. Inform. Theory, IT-41: 1379-1396, September 1995.
[14]D. Chase, "Class of algorithms for decoding block codes with channel measurement
information," IEEE Trans. Inform. Theory, vol. 18, pp. 170-182, Jan. 1972.
[15]R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,” IEEE
Trans. Commun., vol. 46, no. 8, pp. 1003-1010, Aug. 1998.
[16]R. E. Blahut, “Theory and practice of error control codes,” Addison-Wesley, 1983.
[17]T. K. Truong, J. H. Jeng and T. C. Cheng, “A new decoding algorithm for correcting
both erasures and errors of Reed-Solomon codes,” IEEE Trans. Commun., vol. 51, pp.
381-388, 2003.
[18]T. K. Truong, P. D. Chen, L. J. Wang and T. C. Cheng, “Fast transform for decoding
both errors and erasures of Reed-Solomon codes over GF(2m) for 8 10,” IEEE Trans.
Commun., vol. 54, pp. 181-186, 2006.
[19]D. M. Mandelbaum, “Decoding of erasures and errors for certain RS codes by decreased
redundancy,” IEEE Trans. Inf. Theory, vol. 28, pp. 330-336, 1982.
[20]E. H. Lu, C. Y. Lee, and R. L. Tsai, “Decoding algorithm for DEC RS codes,”
Electronics Letters, vol. 36, pp. 1-2, 2000.
[21]S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications. New York:
IEEE Press, 1994.
[22]M. Bossert, Channel Coding for Telecommunications. John Wiley & Sons Ltd, 1999.
[23]“DVD Specifications for Rewritable Disc (DVD-RAM) Part 1, Physical Spec.,” Version
2.0, Sept. 1999.
[24]G. D. Forney, Jr., “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. IT-11,
pp. 549-557, Oct. 1965.
[25]T. K. Truong, J. H. Jeng, and T. C. Cheng, “Inversionless decoding of both errors
and erasures of Reed-Solomon code,” IEEE Trans. Commun., vol. 46, pp. 973-976, Aug.
1998.
[26]J. H. Jeng and T. K. Truong, “On decoding of both errors and erasures of a Reed-
Solomon code using an inverse-free Berlekamp-Massey algorithm,” IEEE Trans. Commun.,
vol. 47, pp. 1488-1494, Oct. 1999.
[27]H. C. Chang, C. B. Shung, and C. Y. Lee, “A Reed-Solomon product-code (RS-PC)
decoder chip for DVD applications” IEEE J. Solid-State Circuits, vol.36, pp. 229-
238, Feb. 2001.
[28]J. J. Komo and L. L. Joiner, “ Fast error magnitude evaluations for Reed-Solomon
codes” in Proc. 2005 IEEE International Symposium on Information Theory, pp. 416,
1995.
[29]S. Dave, K. Junghwan, and S. C. Kwatra, “An efficient decoding algorithm for block
turbo codes,” IEEE Trans. Commun., vol. 49, no. 1, pp. 41-46, Jan. 2001.
[30]A. Al-Dweik, S. Le Goff, and B. Sharif, “A hybrid decoder for block turbo codes,”
IEEE Trans. Commun., vol. 57, no. 5, pp. 1229-1232, May 2009.
[31]S. A. Hirst, B. Honary, and G. Markarian, “Fast Chase algorithm with an application
in turbo decoding,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1693-1699, Oct. 2001.
[32]G. T. Chen, L. Cao, L. Yu, and C. W. Chen, “Test-pattern-reduced decoding for turbo
product codes with multi-error-correcting eBCH codes,” IEEE Trans. Commun., vol. 57,
pp. 307-310, Feb. 2009.
[33]P. A. Martin, D. P. Taylor, and M. P. C. Fossorier, “Soft-input soft-output list-
based decoding algorithm,” IEEE Trans. Commun., vol. 52, no. 2, pp. 252-262, Feb.
2004.
[34]C. Argon, and S. McLaughlin, "An efficient chase decoder for turbo product codes,"
IEEE Trans. Commun., vol. 52, no. 6, pp. 896-898, June 2004.
[35]A. Mahran, and M. Benaissa, "Iterative decoding with a hamming threshold for block
turbo codes," IEEE Trans. Lett., vol. 8, no. 9, pp. 567-569, Sep. 2004.
[36]M. Loncar, R. Johannesson, I. Bocharova, and B. Kudryashov, "Soft-output BEAST
decoding with application to product codes," IEEE Trans. Inf. Theory, vol. 54, no.3,
pp. 1036 - 1049, March 2008.
[37]J. G. Proakis, Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.
[38]A. J. Al-Dweik and B. S. Sharif, "Closed-chains error correction technique for turbo
product codes," IEEE Trans. Commun., vol. 59, pp. 632-638, March 2011.
[39]"www.ieee802.org/16/tg3/contrib/802163p-00_45.pdf."
[40]C. Xu, Y. C. Liang, and W. S. Leon, "Shortened Turbo Product Codes: Encoding Design
and Decoding Algorithm," IEEE Trans. Vehicular Tech., vol. 56, pp. 3495-3501, Nov.
2007.
[41]S. Hongxin and J. R. Cruz, "Block turbo codes for magnetic recording channels," in
Communications, 2000 IEEE International Conference on, vol.1. pp. 85-88, 2000.
[42]C. Xu, Y. C. Lian, and W. S. Leon, "A low complexity decoding algorithm for extended
turbo product codes," IEEE Trans. Wireless Commun., vol. 7, pp. 43-47, Jan. 2008.
[43]L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, no.2, pp.
284-287, March 1974.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top