跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:尤佳琳
研究生(外文):Chia-Lin Yu
論文名稱:拋棄式氧化鉍/坡縷石修飾印刷碳電極在重金屬感測器之研發與應用
論文名稱(外文):Development of disposable Bi2O3–dispersed palygorskite slurry modified screen–printed carbon electrode for use as heavy metal sensor
指導教授:曾志明曾志明引用關係
指導教授(外文):Jyh-Myng Zen
口試委員:鄭淑華陳鴻基
口試委員(外文):Shu-Hua Cheng
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:坡縷石氧化鉍重金屬偵測
外文關鍵詞:palygorskiteBi2O3heavy metal sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文乃利用簡易之超音波震盪的方式將氧化鉍結合坡縷石修飾於拋棄式碳電極上,研發成同時偵測三種不同重金屬之感測器。鉍為無毒性的金屬離子,不會對環境造成傷害,且容易和重金屬離子形成合金,進而提升重金屬的偵測靈敏度。礦土由於含有鎂以及鋁離子,可進行陽離子交換,且結構上具有孔洞可以吸附有機物或金屬離子等等。本研究所開發之拋棄式氧化鉍/坡縷石修飾電極可偵測水溶液中鉛離子、鎘離子與鋅離子三種重金屬含量,得到鉛離子偵測極限為0.3 ppb,線性範圍在10–520 ppb之間;鎘離子偵測極限為0.4 ppb,線性範圍則是10–150 ppb;而鋅離子偵測極限為3.5 ppb,線性範圍在10–430 ppb之間。除此之外,在同步偵測鉛、鎘以及鋅離子亦可得到30–300 ppb良好的線性範圍。

We report here the application of a Bi2O3-palygorskite mixed slurry to prepare an easy for mass-production heavy metal sensor based on disposable screen printed electrode by ultrasonicating process. This Bi2O3–palygorskite modified electrode enables sensitive and simultaneous determination of Cd(II), Pb(II), and Zn(II) by anodic stripping analysis. Bismuth oxide is an environmentally friendly element with low toxicity. Moreover, bismuth can easily form alloy with heavy metals to improve detection performance. By modifying bismuth oxide onto the electrode, these electrodes were applicable for stripping analysis to heavy metals with higher sensitivity. Meanwhile, Palygorskite possesses not only the cation exchange ability but also the porous structure to enhance the anodic preconcentraion. Good electrochemical behavior toward heavy metals analysis was achieved with linear range for Cd(II), Pb(II) and Zn(II) of 10 ‒ 150 ppb, 10 ‒ 520 ppb, 10 ‒ 300 ppb, respectively. The detection limit (S/N = 3) was calculated as 0.4 ppb for Cd(II), 0.3 ppb for Pb(II), and 3.5 ppb for Zn(II). The proposed electrode was also successful in simultaneous detection of Cd(II), Pb(II), and Zn(II) in aqueous solution with linear range of 3 –300 ppb.

第一章 緒論 1
1.1 前言 1
1.1.1 重金屬危害 1
1.1.2 重金屬偵測 4
1.1.3 坡縷石特性 8
1.2 電化學分析方法介紹 14
1.2.1 三電極系統 14
1.2.2 循環伏安法 (Cyclic Voltammetry, CV) 15
1.2.3 剝除伏安法 17
1.2.4方波伏安法 (Square Wave Voltammetry, SWV) 18
第二章 儀器與藥品 20
2.1 儀器設備 20
2.2 藥品目錄與配製方法 22
2.2.1 藥品目錄 22
2.2.2 藥品配製 23
2.3 電極之製備 25
2.3.1 網版印刷碳電極 25
2.3.2修飾電極之方法源由 26
2.3.3超音波機械拋光的原理簡介 27
2.3.4修飾電極之製備方法 28
第三章 結果與討論 30
3.1 Paly + Bi2O3–SPCE之電化學行為 30
3.2 電極特性與表面鑑定分析 40
3.3重金屬離子之偵測 49
3.3.1 修飾條件最佳化 49
3.3.2偵測系統環境參數最佳化 60
3.3.3 方波伏安法參數最佳化 63
3.3.4 校正曲線探討 66
3.3.4 干擾物測試 75
第四章 結論 77
第五章 未來展望 79
5.1 Paly−SPCE應用於電化學發光法 79
第六章 參考文獻 84




1. 書名:環境工程學;編著者:Vesilind Peirce Weiner;編譯者:劉東山,黃政賢;發行人:黃旭政;出版日期:1990年10月初版第一刷。
2. 書名:環境化學概論;編著者:盧昭彰;發行人:黃旭政;出版社:曉園出版社有限公司;出版日期:1995年7月初版第一刷。
3. 行政院環保署水汙染防治法第七條第二項
4. 環保署安全飲用水手冊 (第二版)
5. Li, J.; Guo, S.; Zhai, Y.; Wang, E., Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochemistry Communications 2009, 11 (5), 1085-1088.
6. Joseph Wang, J. L., Samo B. Hocevar,† and Percio A. M. Farias‡, Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Analytical Chemistry 2000, 72 (14), 3218-3222.
7. Samo B. Hocoeevar, a. B. O., a* Joseph Wang,b Boris Pihlarc, A Study on Operational Parameters for Advanced Use of Bismuth Film Electrode in Anodic Stripping Voltammetry. Electroanalysis 2002, 14 (24), 1707-1712.
8. Rehacek, V.; Hotovy, I.; Vojs, M., Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination. Sensors and Actuators B: Chemical 2007, 127 (1), 193-197.
9. Hwang, G.-H.; Han, W.-K.; Park, J.-S.; Kang, S.-G., An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sensors and Actuators B: Chemical 2008, 135 (1), 309-316.
10. Pauliukaite, R.; Metelka, R.; Svancara, I.; Krolicka, A.; Bobrowski, A.; Vytras, K.; Norkus, E.; Kalcher, K., Carbon paste electrodes modified with Bi(2)O(3) as sensors for the determination of Cd and Pb. Analytical and bioanalytical chemistry 2002, 374 (6), 1155-8.
11. Guven, N.; Fripiat, J. J., The coordination of aluminum ions in the palygorskite structure. Clays and Clay Minerals 1992, 40 (4), 457-461.
12. J.B. Dixon and D.G. Schulze, Soil Mineralogy with Environmental Applications. SSSA Book Series, no.7, Singer, A., Madison, WI, USA: Soil Science Society of America, Inc., 2002.
13. MURRAY, H. H., Applied clay mineralogy today and tomorrow. Clay Minerals 1999, 34 (1), 39-49.
14. Murray, H. H., Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science 2000, 17 (5-6), 207-221.
15. Martindale, W. The Extra Pharmacopoeia, 28th Edition. Pharmaco logical Society of Great Britain, Pharmaceutical Press, London, 1982.
16. Chen, H.; Zhao, Y.; Wang, A., Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of hazardous materials 2007, 149 (2), 346-54.
17. Fan, Q.; Li, Z.; Zhao, H.; Jia, Z.; Xu, J.; Wu, W., Adsorption of Pb(II) on palygorskite from aqueous solution: Effects of pH, ionic strength and temperature. Applied Clay Science 2009, 45 (3), 111-116.
18. White, R.E. Introduction to the principles and practices of soil science. 2nd ed. Massachusetts, USA: Blackwell Amer. Pub. Inc. 1987.
19. Myriam, M.; Suarez, M.; Martin-Pozas, J. M., Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals 1998, 46 (3), 225-231.
20. GALAN, E., Properties and applications of palygorskite-sepiolite clays. Clay Minerals 1996, 31 (4), 443-453
21. Bard, A. J.; Faulkner, L. R. In Electrochemical Methods, Wiley, New York, 1980.
22. Wang, J. In Analytic Methods, VCH, New York, 1994.
23. Barendrecht, E. Electroanal. Chem. 1967, 2, 53.
24. Zak, J.; Kuwana, T., Chemically Modified Electrodes and Electrocatalysis Electroanalytical Chemistry 1983, 150, 645-664
25. Dong, S.; Kuwan, T., Activation of Glassy Carbon Electrodes by Dispersed Metal Oxide Particles Journal of The Electrochemical Society 1984, 131 (4), 813-819.
26.導川正憲,超音波工學理論及實務,1988,復漢。
27. A.B.E. Khairy, Wear, 1990, 137, 187.
28. Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M., The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications 2008, 10 (4), 559-563.
29. Li, J.; Guo, S.; Zhai, Y.; Wang, E., High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 2009, 649 (2), 196-201.
30. Hwang, G. H.; Han, W. K.; Park, J. S.; Kang, S. G., Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76 (2), 301-8.
31. Huang, H.; Chen, T.; Liu, X.; Ma, H., Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 2014, 852, 45-54.
32. Philips, M. F.; Gopalan, A. I.; Lee, K. P., Development of a novel cyano group containing electrochemically deposited polymer film for ultrasensitive simultaneous detection of trace level cadmium and lead. Journal of hazardous materials 2012, 237-238, 46-54.
33. Armstrong, K. C.; Tatum, C. E.; Dansby-Sparks, R. N.; Chambers, J. Q.; Xue, Z. L., Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 2010, 82 (2), 675-80.
34. Kefala, G., A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 2003, 61 (5), 603-610.
35. Hwang, G. H.; Han, W. K.; Park, J. S.; Kang, S. G., Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76 (2), 301-8.
36. Samper, E.; Rodríguez, M.; De la Rubia, M. A.; Prats, D., Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology 2009, 65 (3), 337-342.
37. Chen, X.; Sato, M., High-Performance Liquid Chromatographic Determination of Ascorbic Acid in Soft Drinks and Apple Juice Using Tris(2,2''-bipyridine)ruthenium(II) Electrochemiluminescence. Analytical Sciences 1995, 11 (5), 749-754.
38. Jennifer S. Ridlena, D. R. S., a, Peter T. Kissingerb, Timothy A. Niemana ,*, Determination of erythromycin in urine and plasma using microbore liquid chromatography with tris(2,29-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Chromatography B 1997, 694 (2), 393-400.
39. Knight, A. W., A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC Trends in Analytical Chemistry 1999, 18 (1), 47-62.
40. Chiu, M.-H.; Wei, W.-C.; Zen, J.-M., The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+. Electrochemistry Communications 2011, 13 (6), 605-607.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top