跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐誌緯
研究生(外文):Hsu, Chie-Wei
論文名稱:三五族碎能隙異質接面穿隧式場效電晶體之隨機變易特性的模擬與探討
論文名稱(外文):Simulation and Investigation of Random Variations for III-V Broken-Gap Heterojunction Tunnel FET
指導教授:蘇彬
指導教授(外文):Su, Pin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:59
中文關鍵詞:異質接面穿隧式場效電晶體隨機變易特性
外文關鍵詞:heterojunction TFETrandom variability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文藉由三維蒙地卡羅模擬比較和探討了金屬閘極功函數變異與源極隨機摻雜變動對於三五族碎能隙異質接面穿隧式場效電晶體、同質接面穿隧式場效電晶體與鰭式場效電晶體的影響。我們的研究指出在閉態時異質接面穿隧式場效電晶體因具有碎能隙結構,對功函數變異有較高的感受性,而啟動態時則是鰭式場效電晶體有較大的電流變異性。利用在源極端增加一未摻雜的區域可減輕功函數變異對異質接面穿隧式場效電晶體的影響。在源極隨機摻雜變動方面,異質接面穿隧式場效電晶體較同質接面穿隧式場效電晶體與鰭式場效電晶體有著較大的電流變異,而源極隨機摻雜變動對於異質接面穿隧式場效電晶體閉態電流的影響會隨著降低源級摻雜濃度下降而上升
This thesis compares and investigates the impacts of metal-gate work-function variation (WFV) and source random-dopant-fluctuation (source RDF) for III-V broken-gap heterojunction TFET (HTFET), homojunction TFET and FinFET devices using 3-D atomistic Monte Carlo simulation. Our study indicates that the HTFET exhibts higher susceptibility to WFV near OFF state due to its broken-gap nature. For ON current variation, both the HTFET and homojunction TFET show better immunity to WFV than the III-V FinFET. Device design using source-side underlap to mitigate the impact of WFV on HTFET is also assessed. Under source RDF, the HTFET exhibits larger current variations than the homojunction TFET and FinFET. The impact of source RDF increases with decreasing source doping for HTFET near OFF state.
摘要...i
Abstract...ii
Acknowledgements...iii
Related Publication...iv
Contents...v
Table Captions...vi
Figure Captions...vii
Chapter 1 Introduction...1
Chapter 2 Investigation and Mitigation of Work-Function Variation for III-V Heterojunction TFET...6
2.1 Introduction...6
2.2 Simulation Methodologies...6
2.3 Impact of WFV on HTFET...8
2.4 Mitigation of WFV for HTFET...10
2.5 Summary...11
Chapter 3 Simulation and Investigation of Source Random-Dopant-Fluctuation for III-V Heterojunction TFET...30
3.1 Introduction...30
3.2 Simulation Methodologies...31
3.3 Examination of Source RDF for HTFET and Comparison with In0.53Ga0.47As TFET and FinFET Devices...34
3.4 Impact of Source Doping...36
3.5 Summary...37
Chapter 4 Conclusion...52
References...54

[1] Alan C. Seabaugh, Qin Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proceedings of the IEEE, vol.98, no.12, pp.2095-2110, Dec. 2010
[2] K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, “I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q,” Electron Devices Meeting(IEDM), 2002 IEEE International, pp.289-292, 8-11 Dec. 2002
[3] Hei Kam, D.T. Lee, R.T. Howe, Tsu-Jae King, “A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics,” Electron Devices Meeting(IEDM), 2005 IEEE International, pp.463-466, 5-5 Dec. 2005
[4] Sayeef Salahuddin, Supriyo Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices” Nano Letters, pp.405-410, 2008
[5] Woo Young Choi, Byung-Gook Park, Jong-Duk Lee, Tsu-Jae King Liu, “Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec,” Electron Device Letters IEEE, vol.28, no.8, pp.743-745, Aug. 2007
[6] Han Zhao, Yen-Ting Chen, Yanzhen Wang, Fei Zhou, Fei Xue, Jack C. Lee, “Improving the on-current of In0.7Ga0.3As tunneling field-effect-transistors by p++/n+ tunneling junction,” Applied Physics Letters, vol.98, 2011.
[7] Krishnamohan Tejas, Donghyun Kim, Shyam Raghunathan, K. Saraswat, “Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope”, Electron Devices Meeting(IEDM), 2008 IEEE International, pp.1-3, 15-17 Dec. 2008.
[8] D.K. Mohata, R. Bijesh, Y. Zhu, M. K. Hudait, R. Southwick, Z. Chbili, D. Gundlach, J. Suehle, J. M. Fastenau, D. Loubychev, A K. Liu, T.S. Mayer, V. Narayanan, S. Datta, “Demonstration of improved heteroepitaxy, scaled gate stack and reduced interface states enabling heterojunction tunnel FETs with high drive current and high on-off ratio,” VLSI Technology (VLSIT), 2012 Symposium on , pp.53-54, 12-14 June 2012
[9] AW. Dey, B.M. Borg, B. Ganjipour, Martin Ek, Kimberly A Dick, E. Lind, P. Nilsson, C. Thelander, L.-E. Wernersson, “High current density InAsSb/GaSb tunnel field effect transistors,” Device Research Conference (DRC), 2012 70th Annual , pp.205,206, 18-20 June 2012.
[10] Guangle Zhou, Yeqing Lu, Rui Li, Qin Zhang, Qingmin Liu, T. Vasen, Haijun Zhu, Jenn-Ming Kuo, T. Kosel, M. Wistey, P. Fay, A Seabaugh, Huili Xing, “InGaAs/InP Tunnel FETs With a Subthreshold Swing of 93 mV/dec and ION/IOFF Ratio Near 106 ,” Electron Device Letters, IEEE , vol.33, no.6, pp.782,784, June 2012
[11] Guangle Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A Seabaugh, Huili Xing, ”Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at VDS = 0.5 V,” IEDM Tech. Dig., pp.32.6.1-32.6.4, 10-13 Dec. 2012.
[12] T. Skotnicki, C. Fenouillet-Beranger, C. Gallon, F. Boeuf, S. Monfray, F. Payet, A. Pouydebasque, M. Szczap, A. Farcy, F. Arnaud, S. Clerc, M. Sellier, A. Cathignol, J.-P. Schoellkopf, E. Perea, R. Ferrant and H. Mingam, “Innovative materials, devices, and CMOS technologies for low-power mobile multimedia”, IEEE Transactions on Electron Devices, vol. 55, no. 1, pp.96-128, Jan. 2008.
[13] Tomohisa Mizuno, J. Okumtura, Akira Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's,” IEEE Transactions on Electron Devices, vol.41, no.11, pp.2216-2221, Nov. 1994
[14] Hon-Sum Wong, Yuan Taur, “Three-dimensional "atomistic" simulation of discrete random dopant distribution effects in sub-0.1 um MOSFET's,” Electron Devices Meeting (IEDM), 1993 IEEE International, pp.705-708, 5-8 Dec. 1993
[15] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams and K. Zawadzki, “A 45 nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging”, Electron Devices Meeting (IEDM), 2007 IEEE International, pp.247-250, 2007.
[16] K. Ohmori, T. Matsuki, D. Ishikawa, T. Morooka, T. Aminaka, Y. Sugita, T. Chikyow, K. Shiraishi, Y. Nara, K. Yamada, “Impact of additional factors in threshold voltage variability of metal/high-k gate stacks and its reduction by controlling crystalline structure and grain size in the metal gates”, Electron Devices Meeting (IEDM), 2008 IEEE International, pp.1-4, 2008.
[17] Y. X. Liu, K. Endo, S. O'uchi, T. Kamei, J. Tsukada, H. Yamauchi, Y. Ishikawa, T. Hayashida, K. Sakamoto, T. Matsukawa, A Ogura, M. Masahara, “On the gate-stack origin threshold voltage variability in scaled FinFETs and multi-FinFETs”, VLSI Technology (VLSIT), 2010 Symposium on, pp.101,102, 2010.
[18] U.E. Avci, R. Rios, K. Kuhn, IA Young, “Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic,” VLSI Technology (VLSIT), 2011 Symposium on, pp.124-125, 14-16 June 2011.
[19] V. Saripalli, S. Datta, V. Narayanan, J. P. Kulkarni, “Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design,” Nanoscale Architectures, 2011 IEEE/ACM International Symposium on , pp.45-52, 8-9 June 2011
[20] R. Pandey, B. Rajamohanan, Huichu Liu, V. Narayanan, S. Datta, “Electrical Noise in Heterojunction Interband Tunnel FETs,” IEEE Transactions on Electron Devices, vol.61, no.2, pp.552-560, Feb. 2014
[21] Kyoung Min Choi, Woo Young Choi, “Work-Function Variation Effects of Tunneling Field-Effect Transistors (TFETs)”, IEEE Electron Device Letters, vol.34, no.8, pp.942-944, Aug. 2013.
[22] Ming-Long Fan, V.P.-H. Hu, Yin-Nein Chen, Pin Su, Ching-Te Chuang, “Analysis of Single-Trap-Induced Random Telegraph Noise and its Interaction With Work Function Variation for Tunnel FET”, IEEE Transactions on Electron Devices, vol.60, no.6, pp.2038-2044, June 2013.
[23] Shao-Heng Chou, Ming-Long Fan, Pin Su, “Investigation and Comparison of Work Function Variation for FinFET and UTB SOI Devices Using a Voronoi Approach”, IEEE Transactions on Electron Devices, vol.60, no.4, pp.1485-1489, April 2013.
[24] Sentaurus TCAD, Manual, Sentaurus Device, 2011.
[25] M. Luisier, G. Klimeck, “Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb-InAs broken gap heterostructures”, Electron Devices Meeting (IEDM), 2009 IEEE International, pp.1-4, 7-9 Dec. 2009.
[26] Lu Liu, D. Mohata, S. Datta, “Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistors”, IEEE Transactions on Electron Devices, vol.59, no.4, pp.902-908, April 2012.
[27] http://www.itrs.net/
[28] K.J. Kuhn, “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” Electron Devices Meeting (IEDM), 2007 IEEE International, pp.471-474, 10-12 Dec. 2007
[29] A. Asenov, “Simulation of Statistical Variability in Nano MOSFETs,” VLSI Technology (VLSIT), 2007 IEEE Symposium on, pp.86-87, 12-14 June 2007
[30] S.S. Sylvia, K.M.M. Habib, M.A. Khayer, K. Alam, M. Neupane, R.K. Lake, “Effect of Random, Discrete Source Dopant Distributions on Nanowire Tunnel FETs,” IEEE Transactions on Electron Devices, vol.61, no.6, pp.2208-2214, June 2014
[31] Nobuyuki Sano, Kazuya Matsuzawa, Mikio Mukai, Noriaki Nakayama, “On discrete random dopant modeling in drift-diffusion simulations: physical meaning of ‘atomistic’ dopants,” Microelectronics Reliability, Volume 42, Issue 2, pp. 189-199, February 2002
[32] T. Ezaki, T. Ikezawa, A Notsu, K. Tanaka, M. Hane, , “3D MOSFET simulation considering long-range Coulomb potential effects for analyzing statistical dopant-induced fluctuations associated with atomistic process simulator,” Simulation of Semiconductor Processes and Devices, International Conference on , pp.91,94, 2002
[33] L. De Michielis, L. Lattanzio, A-M. Ionescu, “Understanding the Superlinear Onset of Tunnel-FET Output Characteristic,” IEEE Electron Device Letters, vol.33, no.11, pp.1523-1525, Nov. 2012
[34] T. Matsukawa, Yongxun Liu, W. Mizubayashi, J. Tsukada, H. Yamauchi, K. Endo, Y. Ishikawa, S. O'uchi, H. Ota, S. Migita, Y. Morita, M. Masahara, “Suppressing Vt and Gm variability of FinFETs using amorphous metal gates for 14 nm and beyond,” Electron Devices Meeting (IEDM), 2012 IEEE International, pp.8.2.1-8.2.4, 10-13 Dec. 2012

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 鰭狀、穿隧場效電晶體和異質通道三維積體超薄層元件於超低功耗靜態隨機存取記憶體和邏輯電路之設計與分析
2. 量子電容對於三五族多閘極金氧半場效電晶體本質反轉層電容之影響
3. 單晶三維積體之銦鎵砷/鍺超薄電晶體邏輯電路與靜態隨機存取記憶體考慮層間電耦合之分析
4. 全包覆式閘極三五族穿隧式電晶體的直徑最佳化及短通道效應之理論探討
5. 薄膜太陽能電池的光捕捉最佳化之模擬研究
6. 穿隧式場效電晶體與鰭式場效電晶體的隨機變異特性 於類比特性指標之比較及探討
7. 量子電容效應於超薄單閘極與雙閘極及閘極全包覆式三五族金氧半場效電晶體 閘極反轉層電容値之比較與模型建立
8. 負電容超薄絕緣場效電晶體的模擬與探討
9. 高遷移率通道三閘極電晶體 之靜電完整性的理論研究
10. Spacer之設計對多重閘極絕緣砷化銦鎵金氧半鰭狀式場效電晶體的靜電完整性及效能的影響
11. 鰭狀式場效電晶體之特性分析及堆疊式環狀閘極場效電晶體於邏輯電路應用中最佳堆疊層數之探討
12. 混合穿隧式場效電晶體與鰭式場效電晶體的三態內容可定址記憶體電路超低壓應用之研究與分析
13. 超薄絕緣層異質三五族與鍺通道金氧半場效電晶體及單層與多層二維過渡金屬硫屬化合物之邏輯電路及靜態隨機存取記憶體之研究與分析
14. 二維過渡金屬硫屬化合物及堆疊式奈米線元件之靜態隨機存取記憶體分析與研究
15. 鍺通道超薄絕緣層負電容金氧半場效電晶體之設計空間及負電容鰭狀電晶體之鰭邊緣粗糙引發之變異度分析