|
[1] H. S. A. Chiumento and S. Pollin, ”Localization in Long-Range Ultra Narrow Band IoT Networks Using RSSI”, in Proceedings of IEEE International Conference on Communi- cations (ICC 2017), pp. 1–6, Paris, France, May. 2017. [2] D. Liu, S. Guo, Y. Yang, Y. Shi, and M. Chen, ”Geomagnetism Based Indoor Navigation by Offloading Strategy in NB-IoT”, IEEE Internet of Things Journal-Early Access, vol. 6, no. 3, pp. 4074–4084, 2019. [3] A. Hoglund, X. Lin, O. Liberg, and A. Behravan, ”Overview of 3GPP Release 14 En- hanced NB-IoT”, IEEE Network, vol. 31, no. 6, pp. 16–22, 2017. [4] W. Nakai, Y. Kawahama, and R. Katsuma, ”Adaptive Localization in Dynamic Indoor Environments by Transfer Kernel Learning”, in Proceedings of Wireless Communications and Networking Conference (WCNC 2017), pp. 1–6, San Francisco, USA, May. 2017. [5] M. Xu, W. Xia, Z. Jia, Y. Zhu, and L. Shen, ”A VLC-Based 3-D Indoor Positioning System Using Fingerprinting and K-Nearest Neighbor”, in Proceedings of IEEE 85th Vehicular Technology Conference (VTC 2017), pp. 1–5, NSW, Australia, Jun. 2017. [6] R. Wang, M. Liu, Y. Zhou, Y. Xun, and W. Zhang, ”A Deep Belief Networks Adaptive Kalman Filtering algorithm”, in Proceedings of IEEE International Conference on Soft- ware Engineering and Service Science (ICSESS 2016), pp. 178–181, Beijing, China, Aug. 2016. [7] L. Li, C. Sunn, L. Lin, J. Li, and S. Jiang, ”A dual-layer Supervised Mahalanobis Kernel for the Classification of Hyperspectral Images”, Neurocomputing, vol. 214, no. 1, pp. 430– 444, 2016. [8] B. Kulis, ”Metric Learning: A Survey”, Foundations and Trends in Machine Learning, vol. 5, no. 4, pp. 287–364, 2012. [9] C. Xiao, D. Yang, Z. Chen, and G. Tan, ”3-D BLE Indoor Localization based on Denoising Autoencoder”, IEEE Access, vol. 5, no. 1, pp. 12751–12760, 2017. [10] M. Mohammadi, A. Fuqaha, M. Guizani, and J. Oh, ”Semi-Supervised Deep Reinforce- ment Learning in Support of IoT and Smart City Services”, IEEE Internet of Things Journal, vol. 5, no. 2, pp. 624–635, 2017. [11] F. Vita and D. Bruneo, ”A Deep Learning Approach for Indoor User Localization in Smart Environments”, in Proceedings of IEEE International Conference on Smart Computing (ICSC 2018), pp. 89–96, Taormina, Italy, Jun. 2018. [12] G. Wu and P. Tseng, ”A Deep Neural Network Based Indoor Positioning Method Using Channel State Information”, in Proceedings of International Conference on Computing, Networking and Communications (ICCNC 2018), pp. 290–294, HI, USA, Mar. 2018. [13] A. Wang, X. Hao, X. Zhang, A. Wang, and P. Hu, ”A Dynamic Target Visual Positioning Method Based on ROI”, in Proceedings of IEEE 3rd International Conference on Image, Vision and Computing (ICIVC 2017), pp. 592–595, Chongqing, China, Jun. 2017. [14] C. Park, H. Shin, and Y. Choi, ”A Parallel Artificial Neural Network Learning Scheme Basedon Radio Wave Fingerprint for Indoor Localization”, in Proceedings of Tenth In- ternational Conference on Ubiquitous and Future Networks (ICUFN 2018), pp. 592–595, Chongqing, China, Jun. 2017. [15] Z. Zhang, ”Improved Adam Optimizer for Deep Neural Networks”, in Proceedings of IEEE 26th International Symposium on Quality of Service (IWQoS 2019), pp. 1–2, Banff, Canada, Jan. 2019. [16] N. Zhang, D. Lei, and J. Zhao, ”An Improved Adagrad Gradient Descent Optimization Algorithm”, in Proceedings of Chinese Automation Congress (CAC 2019), pp. 1–4, Xi’an, China, Jan. 2019. [17] R. V. K. Reddy, B. S. Rao, and K. P. Raju, ”Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization”, in Proceedings of Second International Conference on Intelligent Computing and Control Systems (ICICCS 2019), pp. 1–7, Madurai, India, Mar. 2019. [18] N. Jean, S. M. Xie, and S. Ermon, ”Semi-Supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance”, Neural Information Processing Systems, arXiv:1805.10407, 2019. [19] W. Nakai, Y. Kawahama, and R. Katsuma, ”Reducing Error of Positioning Based on Unstable RSSI of Short Range Communication”, in Proceedings of Advanced Information Networking and Applications (AINA 2019), pp. 572–578, Krakow, Poland, May. 2018. [20] L. He and H. Zhang, ”Kernel K-Means Sampling for Nystrm Approximation”, IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2108–2120, 2018. [21] A. Long, J. Wang, J. Sun, and P. S. Yu, ”Domain Invariant Transfer Kernel Learning”, IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 6, pp. 1519–1532, 2015.
|