跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃硯毓
研究生(外文):Yen-Yu Huang
論文名稱:超音波輔助加速氮化鋁水解之研究
論文名稱(外文):Rapid Hydrolysis of Aluminum Nitride by Ultrasonic Wave-Enhanced Process
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):Cheng-Hsien Tsai
口試委員:蔡瀛逸廖渭銅謝連德
口試委員(外文):Ying-I TsaiWei-Tung LiaoLien-Te Hsieh
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:93
中文關鍵詞:氮化鋁加速水解超音波空泡沖蝕音波空泡鋁水合物
外文關鍵詞:aluminum nitriderapid hydrolysiscavitation erosionacoustic cavitation bubbleamorphous aluminum hydroxideultrasonic wave
相關次數:
  • 被引用被引用:3
  • 點閱點閱:793
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁 (AlN) 極易發生水解反應,但因生成產物層,使擴散阻力上升,導致
水解速率逐漸緩慢而難以完全水解,因此,本研究以超音波輔助加速氮化鋁水解,
利用超音波空泡沖蝕原理,降低產物層擴散阻力縮減反應所需的時間,並與傳統直
接加熱法之效能比較。實驗並探討反應溫度 (25℃, 50℃, 70℃)、反應時間 (10-1440
min) 與溶液中之pH 起始值 (未調整 ~ 6.6, 3, 12) 對氮化鋁粉末水解之影響。
實驗結果顯示:AlN (2 μm) 之水解轉化率,在25℃下,直接加熱法反應1440
min 轉化率僅為87.2%,即使在70℃下,反應360 min 後仍僅達92.3%。 而超音波
法在50℃下,於180 min 時即可使AlN 完全水解。 經由監測溶液pH 值與NH4
+ 濃度之變化,亦顯示超音波輔助法明顯加速AlN 水解。 XRD 圖譜顯示在25℃下,超
音波法反應120 min 時,即有明顯的Al(OH)3 (bayerite) 和少量的AlOOH (boehmite)
晶相出現; 在50℃下,水解60 min 時,兩者方法均出現明顯的Al(OH)3 和微量的
AlOOH 晶相;在70℃下,超音波法反應30 min 時,Al(OH)3 為主要晶相,而直接
加熱法量測到AlOOH 的寬波峰,且隨著時間增加逐漸轉化,但強度沒有明顯上升,
顯示直接加熱法應以先水解為非晶相的AlOOH,再逐漸轉化為AOOH 與 Al(OH)3
晶相。 除此之外,SEM 顯示AlN 粉體外觀以鱗片狀的AlOOH 為主,並隨著水解
時間增加逐漸包覆粉體外層,僅能觀察到少量柱狀的Al(OH)3,推論粉體內部主要
以形成Al(OH)3 晶相為反應終點。
不同pH 起始值 (pH0) 的水解速率顯示:以超音波法水解氮化鋁粉末,水解速
度快慢依序在以下不同溶液中:deionized water (pH0 = 6.5) ~ NaOH(aq) (pH0 = 12) >
HCl(aq) (pH0 = 3),加NaOH 沒有明顯加速反應,僅與未調整pH 起始值的水解速率
相當;但加入HCl,即使過了潛伏期,水解速率雖有上升,但仍明顯慢於未調整pH
起始值或加入NaOH 之反應。
Due to the high reactivity of aluminum nitride (AlN) powder with water, the
product layer will be generated on the surface of powders, resulting in the elevation of
diffusion resistance and the difficulty of complete hydrolysis of AlN particles. Therefore,
in this study, the rapid hydrolysis of aluminum nitride via the ultrasonic wave-enhanced
process by means of the cavitation erosion of ultrasonic wave to decrease the diffusion
resistance of product layer has been proposed. The performance of AlN hydrolysis is
compared between the traditional heating process (THP) and ultrasonic wave-enhanced
process (UWP). Moreover, the effects of initial reaction temperature (25℃, 50℃, 70℃),
reaction time (10-1440 min), and initial pH values (pH0 = 3, 6.6, 12) on the performance
of AlN hydrolysis has also been discussed The results showed that at 25℃, the conversion of AlN (2 μm) was only 87.2%
after hydrolyzing 1440 min, and reached only 92.3% at 70℃ after 360 min of hydrolysis
by using the THP. However, by using UWP, AlN was completed after 180 min of
hydrolysis at 50℃. The trends for the increase of pH value and the measured NH4
+ concentration in solution at 25℃ were consistent with the conversion of AlN for THP and
UWP. According to the XRD patterns, a weak and broad peak of amorphous AlOOH was
found at a short hydrolysis time, especially for THP, while apparent Al(OH)3 (bayerite)
with a middle intensity of AlOOH (boehmite) crystallization phase at a longer reaction
time or at a higher hydrolysis temperature had been identified. However, the SEM
pictures showed that the morphology of the hydrolyzed-AlN powders was mainly
composed by a large amount of lamellas boehmite with little of the columnar of bayerite,indicated that the bayerite crystallize phase was formed mainly in the internal of the AlN
powders. Finally, the influences of various starting pH values (pH0) in solution by UWP
on the conversion of AlN powder showed that the hydrolysis rate is in the orders:
deionized water (pH0 = 6.6) ~ NaOH(aq) (pH0 = 12) > HCl(aq) (pH0 = 3).
摘 要 I
ABSTRACT III
誌 謝 V
總目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1-1研究動機及目的 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 氮化鋁特性 4
2-1-1氮化鋁的晶體結構 4
2-1-2氮化鋁的物理化學特性 5
2-2 氮化鋁的應用 6
2-3 氮化鋁水解 7
2-3-1氮化鋁水解的反應原理 7
2-3-2氮化鋁水解產物結晶機制 9
2-3-3-1 pH值對水解的影響 12
2-3-3-2 溫度對水解的影響 13
2-3-3-3 時間對水解的影響 14
2-3-3-4 粒徑對水解的影響 15
2-4 液固相反應動力模式 16
2-4-1 流體-固相反應模式 16
2-4-2 縮核模式解析氮化鋁水解的現況 18
2-4-3 縮核模式、轉化率與時間關係式 19
2-4-4 縮核模式修正項 20
2-5 熱力學參數計算 21
2-6 超音波的性質 22
2-6-1 波的種類 22
2-6-2 超音波的周波數範圍 22
2-6-3 超音波空泡形成原理 23
2-6-4 超音波空泡沖蝕作用原理 24
2-6-5 超音波空泡的種類 24
2-6-6 空泡沖蝕現象在本研究之應用 26
2-6-7 超音波技術應用 26
2-6-8 超音波洗淨 28
2-6-9 超音波加速水解反應之應用 29
第三章 實驗設備與方法 31
3-1實驗設備與材料 31
3-1-1 藥品及材料 31
3-1-2 設備 32
3-2 實驗流程與參數設定 34
3-2-1實驗流程 34
3-2-2 參數設定 36
3-3 產物分析系統 36
第四章 結果與討論 40
4-1 氮化鋁粉末水解之轉化率 40
4-1-1 轉化率之計算 40
4-1-2 溫度及水解方法對轉化率之影響 41
4-2 水解方法對溶液pH值、溫度及NH4+濃度變化之影響 43
4-3 氮化鋁粉末之產物分析 46
4-3-1比表面積分析 46
4-3-2 X光繞射分析 47
4-3-3掃瞄式電子顯微鏡形貌分析 50
4-3-4 穿透式電子顯微鏡分析 56
4-3-5擴散反射式紅外線光譜分析 57
4-3-6 計算Al(OH)3含量分析 60
4-4 不同pH起始值對水解之影響 62
4-4-1不同pH起始值對轉化率之影響 62
4-4-2 不同pH起始值對溶液pH值變化之影響 63
4-4-3不同pH起始值下之產物XRD分析 64
4-4-4 不同pH起始值對產物形貌之影響 66
第五章 結論與建議 70
5-1 結論 70
5-2 建議 72
參考文獻 73
簡 歷 79

1.Anthony, A., Charles. S., Kevin, E., Howard, S., Anderson, A., “Moisture resistant aluminum nitride filler for high conductivity microelectronic molding compounds”, electronic components and technology conference, 335-342, 1996.
2.Baraton, M. I., Chen, X., Gonsalves, K. E., " FTIR analysis of the surface of nanostructured aluminium nitride powder prepared via chemical synthesis", J. Mater. Chem., 6, 1407-1412, 1996.
3.Blake, J. R., " Cavitation bubbles near boundaries", Ann. Rev. Fluid Mech., 19, 99-123, 1987.
4.Blake, J. R., Tomita, Y., Tong, R. P., “The art craft and science of modelling jet impact in a collapsing cavitation bubble”, Appl. Sci. Res., 58, 77-90, 1998.
5.Borgwardt, R. H., “Kinetics of the reaction of SO2 calcined limestone”, Environ. Sci. Technol., 4(1), 1970.
6.Bowen, P., James, G., Highfield., Mocellin, A., Ring, T.,“ Degradation of aluminum nitride powder in an aqueous environment ”, J. Am. Ceram. SOC., 73, 724-728, 1990.
7.Bye, G. C., Robinson, J. G., " Crystallization processes in aluminium hydroxide gels", Colloid Polym. Sci., 198, 53-60, 1964.
8.Carter, R. E., “Kinetic model for solid-state reactions”, J. Chem. Phys., 34, 2010-2015, 1961A.
9.Carter, R. E., “Kinetic model for solid-state reactions”, J. Chem. Phys., 35, 1137-1138, 1961B.
10.Chen, Q., Zeng, W., Gu, S., Yang, G., Zhou, H., Yin, Z., “Determination of the standard molar enthalpy of formation of α-AlOOH (diaspore)”, J. Chem. Thermodyn., 27, 443-446, 1995.
11.Doraiswamy, L. K., Sharma, M. M., "Heterogeneous reactions", Chem. Eng. Sci., 2, 232-257, 1984
12.Ferrandon, M. S., Lewis, M. A., Alvarez, F., Shafirovich, E., "Hydrolysis of CuCl2 in the Cu-Cl thermochemical cycle for hydrogen production: experimental studies using a spray reactor with an ultrasonic atomizer", Int. J. Hydrogen. Energ., 35, 1895-1904, 2010.
13.Fonseca, A. M., Orfao, J. J., and Salcedo, R. L., “Kinetic modeling of the reaction of HCl and solid lime at low temperatures”, Ind. Eng. Chem. Res., 37, 4570-4576, 1998.
14.Fonseca, A. M., Orfao, J. J., and Salcedo, R. L., “A new approach to the kinetic modeling of the reaction of gaseous HCl with solid lime at low temperatures with solid lime at low temperatures”, Chem. Eng. Sci., 58, 3499-3506, 2003.
15.Fukumoto, S., Hookabe, T., Tsubakino, H., “ Hydrolysis behavior of aluminum nitride in various solutions”, J. Mater. Sci., 35, 2743-2748, 2000.
16.Gai, W. Z., Liu, W. H., Deng, Z. Y., Zhou, J. G., “Reaction of Al powder with water for hydrogen generation under ambient condition”, Int. J. Hydrogen. Energ., 37, 13132-13140, 2012.
17.Graziani, T., Bellosi, A., “Degradation of dense AIN materials in aqueous environments”, Mater. Chem. Phys., 35, 43-48, 1993.
18.Guanghui, L., Shiyong, D., “Fabrication of aluminiferous nanofibers by simple hydrolysis of nano-sized Al/AlN powder”, Adv. Mat. Res., 10, 790-794, 2012.
19.Gullett, B. K., Jozewicz, W., and Stefanski, L. A., “Reaction kinetics of Ca-based sorbents with HCl”, Ind. Eng. Chem. Res., 31, 2437-2446, 1992.
20.Heslop, R., Jones, K., Inorganic chemistry: a guide to advanced study, Elsevier. Scientific. Pub. Co., 1976.
21.Hiroi, S., Hosokai, S., Akiyama, T., “Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation”, Int. J. Hydrogen. Energ., 36, 1442-1447, 2011.
22.Highfield, J. G., Bowen, P., "Diffuse-reflectance fourier transform infrared spectroscopic studies of the stability of aluminum nitride powder in an aqueous environment", Anal. Chem., 61, 2399-2402, 1989.
23.Kocjan, A., Krnel, K., Kosma, T., “The influence of temperature and time on the AlN powder hydrolysis reaction products”, J. Eur. Ceram. Soc., 28, 1003-1008, 2008.
24.Kocjan, A., Dakskobler, Ales., Krnel, K., Kosmac, T., “The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions”, J. Eur. Ceram. Soc., 31, 815-823, 2011.
25.Kocjan, A., Dakskobler, A., Kosmac,T., “Evolution of aluminum hydroxides in diluted aqueous aluminum nitride powder suspensions”, Cryst. Growth. Des., 12, 1299-1307, 2012.
26.Kosmac, T., Novak, S., Krnel, K., “Hydrolysis assisted solidification process and its use in ceramic wet forming”, Z. Metallkd., 92, 150-157, 2001.
27.Krnel, K., Drazic, G., Kosmac, T., “Degradation of AlN powder in aqueous environments”, J. Mater. Res., 19, 1157-1163, 2004.
28.Krnel, K., Kosmac, T., “Reactivity of AlN powder in an aqueous environment”, Eng. Mater., 264-268, 29-32, 2004.
29.Krnel, K., Kosmac, T., “Aqueous processing of AlN powder”, Mater. Sci. Forum., 554, 189-196,2007.
30.Lauterborn, W., Ohl, C. D., “Cavitation bubble dynamics”, Ultrason. Sonochem., 4, 65-67, 1997.
31.Levenspiel, O., Chemical reaction engineering, 3rd ed., Wiley, New York, 1999.
32.Leighton, T. G., "The acoustic bubble", J. Fluid. Mech., 272, 407-409, 1994.
33.Li, J., Nakamura, N., Shirai, T., Matsumaru, K., Ishizaki, C., Ishizaki, K., “Mechanism and kinetics of aluminum nitride powder degradation in Moist Air”, J. Am. Ceram. Soc., 89, 937-943, 2006.
34.Mahuli, S. K., Agnihotri, R., Jadhav, R., Chauk, S. and Fan, L. S., “Combined calcination, stintering and sulfation model for CaCO3-SO2 reaction”, AIChE J., 45(2), 1999.
35.Mason, T. J., Cordemans, E. D., “Ultrasonic intensification of chemical processing and related operations:A Review” , Ti. Chem. Eng-Lond., 74, 511-516, 1996.
36.Mason, T. J., Sonochemistry the use of ultrasound in chemistry, Royal Society of Chemistry, 1990.
37.Mejean, T. M., Baraton, M. I., Quintard, P., Laurent, Y., Lorenzelli, V., "Fourier-transform infrared characterization of an aluminium nitride surface", J. Chem. Soc. 89, 3111-3115, 1993.
38.Mobley, W. M., Colloidal Properties Processing and characterization of aluminum nitride suspensions, Ph.D. Thesis, Alfred University, Alfred, New York, p. 110, 1996.
39.Neppiras, E. A., “Acoustic cavitation: an introduction”, Ultrasonics, 22, 25-28, 1984.
40.Peryea, F. J., Kittrick, J. A., “Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions”, Clay. Clay. Miner., 36 (5), 391-396, 1988.
41.Ramachandran, K. B., Zuhair, S. A., Fong, C. S., Gak, C. W., "Kinetic study on hydrolysis of oil by lipase with ultrasonic emulsification", Biochem. Eng. J., 32, 19-24, 2006.
42.Reetz, T., Monch, B., Saupe, M., “Aluminum nitride hydrolysis”, Ber. DKG.,68, 464-475, 1992.
43.Rozenberg, L. D., High intensity ultrasonic fields, Plenum Press , 1971.
44.Robert, H. P., Don, W. G., Perry's., Chemical Engineer's Handbook, 7th Ed., p. 2-187, 1998.
45.Soler, L., Candela, A. M., Macanas, J., Munoz, M., Casado, J., “In situ generation of hydrogen from water by aluminium corrosion in solutions of sodium aluminate”, J. Power Sources, 192, 21-26, 2009.
46.Suslick, K. S., Doktycz, S. J., Flint, E. B., “On the origin of sonoluminescence and sonochemistry”, Ultrasonics, 28, 280-290, 1990.
47.Tomita, Y., Shima, A., “mechanisms of impulsive pressure generation and damage pit formation by bubble collapse”, J. Fluid Mech., 169, 535-564, 1986.
48.Wefers, K., Misra, C., Oxides and hydroxides of aluminum, alcoa technical paper, 19, Revised Ed., Alcoa Research Laboratories, Pittsburgh, 1987.
49.Yoldas, B. E., “Hydrolysis of aluminium alkoxides and bayerite conversion”, J. Appl. Chem. Biotechnol., 23, 803-809, 1973.
50.Yunus, R., Salleh, S. F., Abdullah, N., Biak, D. R. A., "Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch", Bioresource. Technol., 101, 9792-9796, 2010.
51.Zhang, Y., "Effect of surfactant on depressing the hydrolysis process for aluminum nitride powder", Mater. Res. Bull., 37, 2393-2400, 2002.
52.Zhang, Y., Binner, J. G. P., “Characterisation of a surface treated AlN powder in aqueous media”, Int. J. Inorg. Mater., 1, 219-227, 1999.
53.Zhang, Y., Binner, J., " Hydrolysis process of a surface treated aluminum nitride powder - A FTIR study", J. Mater. Sci. Lett., 21, 803-805, 2002.
54.賴耿陽,超音波工學理論實務,復漢出版社,2001。
55.李小雷,氮化鋁陶瓷,冶金工業出版社,2010。
56.黃明夷,運用超音波空氣流微粒移除機制於玻璃基板之探討,逢甲大學,材料與製造工程研究所,碩士論文,2006.
57.謝承佑,氮化鋁粉體水解性質探討與抗濕技術開發,國立成功大學,化學工程研究系,碩士論文,2002。
58.徐林煒,氮化鋁粉末的水解行為研究,南昌大學,材料科學與工程學院,應用科技研討會,2009。
59.徐林煒,AlN粉末的水解行為及抗水解性能研究,南昌大學,材料科學與工程學院,碩士論文,2010。
60.張宇,"pH值對AlN粉末水解產物的影響",陶瓷期刊,2011。
61.朱志鴻,添加助燒劑及特殊燒結製程對製備氮化鋁導熱陶瓷之燒結研究,國立成功大學,資源工程學系,碩士論文,2006。
62.陳冠亨、謝永祥,超音波靜態測距,逢甲大學,自動控制工程學系,專題論文,2005。
63.陳永增,超音波空泡破壞應用在鋁合金氧化膜診斷上之研究,國立中央大學,機械工程研究所,博士論文,2003。
64.吳育豪,燃燒法合成氮化鋁粉體之新製程開發,國立成功大學,化學工程研究所,碩士論文,2004。
65.汪建民等,陶瓷技術手冊,經濟部技術部、中華民國粉末冶學會、中華民國產業發展協進會出版,1994。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top