跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳澤民
研究生(外文):Tzer-Min Wu
論文名稱:應用資料探勘技術於維修知識推薦之研究-以飛機維修資料庫為例
論文名稱(外文):A study of applying data mining techniques to maintenance knowledge recommendation -Aircraft maintenance database as example.
指導教授:李維平李維平引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:41
中文關鍵詞:修護資料推薦系統飛機資料探勘知識擷取
外文關鍵詞:data miningrecommendation systemmaintenance dataaircraftknowledge retrieval
相關次數:
  • 被引用被引用:7
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
資訊科技的進步使得大部分的企業或組織皆已建立資訊系統來收集日常作業及管理等相關資料,當資訊系統收集了大量的資料在資料庫以後,企業更進一步思考能不能從這些儲存的資料中發現一些對企業有價值的資訊或知識,以便藉由這些知識的幫助來提升企業對外的競爭力。
維修領域是很強調專業技術及經驗累積的工作,近年來由於資訊科技的進步,已經可以將這些隱藏在工作人員身上的經驗及知識,藉由資訊系統的蒐集而保存在資料庫中,然而,如果無法將這些保存在資料庫中的資料轉化為對工作人員有用的知識,再藉由有效的資訊搜尋機制將其散播出去,這些保存在資料庫中的資料就如同隱藏的知識般,無法用它來進行知識的傳遞進而幫助經驗的交流。由於資料探勘技術在資料分析及知識擷取方面的研究上有非常豐富的成果,因此資料探勘技術在維修領域的應用與研究也逐漸受到重視。本研究希望將資料探勘技術應用於維修產業的維修知識擷取上,並嘗試以飛機維修資料庫為例,藉由資料探勘技術的輔助來建構飛機維修知識推薦系統,而能夠對飛機維修工作有所幫助進而達到維修經驗交流與知識傳承的目的。
我們先實驗傳統MBR方法得到初步的結果後,進一步分析實驗資料的特性而提出以類別為導向的MBR方法,稱之為CMBR(Class-Oriented MBR),將以個別資料的特徵向量來測量與新資料間相似度的MBR方法,改以類別的關鍵字特徵來測量的CMBR方法,藉以改善分類的正確率及分類運算的執行效率。實驗結果顯示我們所提出的CMBR方法應用在飛機維修資料的分類上有較高的正確率。
最後我們以CMBR方法建立分類模型,藉以架構維修知識系統來輔助維修技術人員,使其能夠快速地找到故障現象對應的參考維修技術文件及可能的處理方式來完成維修工作。由於飛機線上維修的工作對於時間的要求非常嚴格,必須在最短的時間將飛機故障排除以便繼續飛行任務,而藉由本研究維修知識系統的輔助,將可縮短線上維修人員故障的判斷時間,使維修技術人員能夠快速地完成維修工作,並達成維修經驗傳承及知識傳遞的目標。
Due to the development of information techniques in recent years. Lots of companies have setup information systems to collect the daily operation data and stored these data in the database. In order to enforce the competitive advantage for company. They want to retrieve some useful information and knowledge from data.

The maintenance engineering arises from professional field and experience accumulated. Since the development of information techniques, we use information systems to store the knowledge and experience of people in the database. If we can’t transfer these data to useful knowledge for people, then we can’t transfer knowledge to others from these data. The researches of data mining techniques have been developed very well in many fields. The application of data mining techniques in maintenance field being in paid much attention in these years. The purpose of this study is to apply data mining techniques to maintenance knowledge retrieval and to construct a maintenance knowledge recommendation system. This system can help maintenance engineer to finish their work more quickly.
This study applying traditional memory based reasoning technique (RMBR) to obtain a preliminary result and analysis the data character. Then we propose a class-oriented memory based reasoning technique (CMBR) to improve the accuracy and performance of classification. The experimental results of CMBR show a higher accuracy than traditional MBR (RMBR).
This study applying CMBR to construct a classified model and use this model to construct a maintenance knowledge recommendation system. This recommendation system can help maintenance engineer to find technical document and solution to complete his work. Because line maintenance must be completed in the shorten time. Helping by the maintenance knowledge recommendation system, then the maintenance engineer will do job well and quickly. In addition, he can acquire the experience from others.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 3
第三節 內容介紹 4
第二章 文獻探討與背景介紹 5
第一節 資料探勘技術的應用 5
第二節 資料探勘技術在飛機維修領域的應用 6
第三節 研究相關之資料探勘技術 7
第四節 飛機維修工作簡介 10
第五節 維修資料說明 11
第三章 研究架構 13
第一節 實驗架構 13
第二節 資料前置處理 15
第三節 實驗方法 17
第四節 傳統MBR(RMBR)方法與類別導向MBR(CMBR)方法
的比較 24
第四章 實驗結果 29
第一節 傳統記憶基礎理解(RMBR)方法實驗結果 29
第二節類別導向記憶基礎理解(CMBR)方法實驗結果 32
第五章維修知識系統雛形展示 35
第六章 結論 38
第一節 研究限制 38
第二節 研究貢獻 38
第三節 未來的研究方向 39
參考文獻 40
[1] Michael J. A. Berry and Gordon Linoff . “Data Mining Techniques-For Marketing, Sales, And Customer Support “. 1997, Published By John Wiley & Sons,Inc.[2] 杜拉克 等著 張玉文 譯 湯明哲 導讀 “哈佛商業評論精選02 知識管理”, page6, 2001, 天下遠見出版股份有限公司. [3] Sylvain Létourneau, Fazel Famili, Stan Matwin, “Data Mining For Prediction Of Aircraft Component Replacement”, 1999, Institute for Information Technology National Research Council of Canada, Ottawa , School of Information Technology and Engineering University of Ottawa, Canada.[4] A. Famili and S. Letourneau, “Monitoring of Aircraft Operation using Statistics and Machine Learning”, 1999, National Research Council of Canada.[5] José M. Peña, Sylvain Létourneau, and Fazel Famili, ”Application of Rough Sets Algorithms to Prediction of Aircraft Component Failure”, 1 Institute for Information Technology, National Research Council, Ottawa, Canada , 2 Department of Computer Science, Universidad Politécnica de Madrid, Spain.[6] Sylvain Létourneau, A. Famili, Stan Matwin, “Discovering Useful Knowledge from Aircraft Operation/Maintenance Data”, 1997, Workshop on Machine Learning Applications in the Real World: Methodological Aspects and Implications. ICML-97.[7] Peter Turney and Michael Halasz, “Contextual Normalization Applied to Aircraft Gas Turbine Engine Diagnosis”, 1992, NRC #35028.[8] M. Halasz, F. Dubé, R. Orchard, and R. Ferland, “The Integrated Diagnostic System (IDS):Remote Monitoring and Decision Support for Commercial Aircraft —Putting Theory into Practice”, 1999, *Published in “Proceedings of AAAI ‘99 Symposium on AI in Equipment Maintenance and Support, Palo Alto, CA. March 22-24, 1999”[9] Bernd Groh, “Automated Knowledge and Information Fusion from multiple text-based sources using Formal Concept Analysis” , 1999, S School Of Information Technology Griffith University.[10] Michael , Steinbach George, Karypis Vipin Kumar, “A Comparison of Document Clustering Techniques”, 2000, Department of Computer Science and Engineering University of Minnesota Technical Report #00-034.[11] Ying Zhao and George Karypis, “Criterion Functions for Document Clustering Experiments and Analysis”, 2002, University of Minnesota, Department of Computer Science / Army HPC Research Center,Minneapolis, MN 55455,Technical Report #01-40.[12] Steven Salzberg, Book Review: "C4.5: Programs for Machine Learning" by J. Ross Quinlan, 1994, machine learning 1-6(1994).[13] ' Salvatore Ruggieri, “Efficient C4.5”, 2000, UNIVERSITÀ DI PISA DIPARTIMENTO DI INFORMATICA Technical Report :TR-00-01.[14] Paul E. Utgoff, Carla E. Brodley, “Linear Machine Decision Trees” , 1991, Department of Computer Science University, COINS Technical Report 91-10.[15] Mao, J., Jain, A.K., “Artificial Neural Networks for Feature Extraction and Multivariate Data Projection”, page 296-316 , in IEEE Trans.on Neural Networks, Vol.6, No.2, March 1995.[16] S. K. PAL, S. MITRA: “Multilayer Perceptron, Fuzzy Sets and Classification.” page 683-697, 1992, IEEE Trans. on Neural Networks 3.[17] Breese, Heckermen, and Kadie. “Empirical analysis of predictive algorithms for collaborative filtering”., 1998, Technical report, Microsoft Research.[18] Zavrel, J. and Daelemans, W.,.” Memory-Based Learning: Using Similarity for Smoothing”., 1997, In Proceedings of the 35th Annual Meeting of the ACL, and 8th Conference of the EACL, Madrid, Spain. ACL.[19]Erwin Kreyszig 著 廖東成,吳家祥譯 , ”Advanced Engineering Mathematics Sixth Edition 高等工程數學”,松崗電腦圖書資料股份有限公司[20] Steven J. Leon, “Linear Algebra With Applications”, 1997, Prentice Hall Press, Inc.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊