|
1.Bernard, M.L., Criteria for optimal web design (designing for usability). http://psychology.wichita.edu/optimalweb/position.htm, 2002. 2.Broder, A., A taxonomy of web search. SIGIR Forum, 2002. 36(2): p. 3-10. 3.Cho, H.-P., Improving the Display of Search Result Using Search Goal Type. 2008. 4.Cai, D., et al. VIPS: a Vision-based Page Segmentation Algorithm. 2003. 5.Liu, B., R. Grossman, and Y. Zhai, Mining data records in Web pages, in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003, ACM: Washington, D.C. p. 601-606. 6.Chakrabarti, D., R. Kumar, and K. Punera, A graph-theoretic approach to webpage segmentation, in Proceeding of the 17th international conference on World Wide Web. 2008, ACM: Beijing, China. p. 377-386. 7.Kohlsch?tter, C. and W. Nejdl, A densitometric approach to web page segmentation, in Proceeding of the 17th ACM conference on Information and knowledge management. 2008, ACM: Napa Valley, California, USA. p. 1173-1182. 8.Song, R., et al., Learning block importance models for web pages, in Proceedings of the 13th international conference on World Wide Web. 2004, ACM: New York, NY, USA. p. 203-211. 9.Lin, S.-H. and J.-M. Ho, Discovering informative content blocks from Web documents, in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002, ACM: Edmonton, Alberta, Canada. p. 588-593. 10.Kao, H.-Y., J.-M. Ho, and M.-S. Chen. DOMISA: DOM-based Information Space Adsorption for Web Information Hierarchy Mining. in Proceedings of the 4th SIAM Intern'l Conference on Data Mining (SDM-04) 2004. 11.Cho, W.-T., Y.-M. Lin, and H.-Y. Kao, Entropy-Based Visual Tree Evaluation on Block Extraction, in Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01. 2009, IEEE Computer Society. p. 580-583. 12.Lee, U., Z. Liu, and J. Cho, Automatic identification of user goals in Web search, in Proceedings of the 14th international conference on World Wide Web. 2005, ACM: Chiba, Japan. p. 391-400. 13.He, K.-Y., Y.-S. Chang, and W.-H. Lu, Improving Identification of Latent User Goals through Search-Result Snippet Classification, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. 2007, IEEE Computer Society. p. 683-686. 14.Deng, C., Y. Shipeng, and W.-Y.M. Ji-Rong Wen. VIPS: a Vision-based Page Segmentation Algorithm. 2003. 15.Kao, H.-Y., et al. Entropy-Based Link Analysis for Mining Web Informative Structures. in CIKM. 2002. 16.Casading Style Sheets (CSS). Available from: http://www.w3.org/Style/CSS/. 17.Chan, Y.-C. Google-Based Two-Stage Text Segmentation and Learning Question Type Identification from Wikipedia for a Multilingual QA System. 2007. 18.Tanaka-Ishii, K. and H. Nakagawa. A Multilingual Usage Consultation Tool Based on Internet Searching -More than a Search Engine, Less than QA-,. in Proceedings of the 14th International World Wide Web Conference. 2005. 19.Jin, Z. and K. Tanaka-Ishii. Unsupervised Segmentation of Chinese Text by Use of Branching Entropy. in Proceedings of the COLING/ACL Main Conference Poster Sessions. 2006. 20.Kohlschutter, C. and W. Nejdl. A Densitometric Approach to Web Page Segmentation. in CIKM. 2008. Napa Valley. 21.Cosine similarity. Available from: http://en.wikipedia.org/wiki/Cosine_similarity. 22.Cortes, C. and V. Vapnik. Support-Vector Networks. in Machine Learning. 1995. 23.Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines. 2001. 24.Precision and recall. Available from: http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29.
|