|
1. M. Karas, et al, Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Analytical Chemistry, 1985. 57(14): p.2935–2939. 2. M. Karas, , et al, Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. International Journal of Mass Spectrometry and Ion Processes, 1987. 78: p.53–68. 3. K. Tanaka, et al, Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of flight Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p.151–153. 4. J.E. Delmore, et al, Tube ion source for the study of chemical effects in surface ionization. International Journal of Mass Spectrometry and Ion Processes, 1991. 108(2-3): p.179-187. 5. F. Kötter and A. Benninghoven, Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment. Applied Surface Science, 1998. 133(1-2): p.47-57. 6. K. Boussofiane-Baudin, et al, Secondary ion emission under cluster impact at low energies (5–60 keV); influence of the number of atoms in the projectile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994. 88(1-2): p.160-163. 7. Y. Le Beyec, Cluster impacts at keV and MeV energies: Secondary emission phenomena. International Journal of Mass Spectrometry and Ion Processes, 1998. 174(1-3): p.101-117. 8. Bang-Ying Yu, et al, Sputter Damage in Si (001) Surface by Combination of C60+ and Ar+ Ion Beams. Applied Surface Sciences, 2008. 255(5): p.2490-2493. 9. Yu-Chin Lin, et al, Sputter-Induced Chemical Transformation in Oxoanions by Combination of C60+ and Ar+ Ion Beams Analyzed with X-ray Photoelectron Spectrometry. Analyst, 2009. 134 (5): p.945-951. 10. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.528-529. 11. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.529-530. 12. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.530-531. 13. H.D. Beckey, Field desorption mass spectrometry: A technique for the study of thermally unstable substances of low volatility. International Journal or Mass Spectrometry and Ion Physics, 1969. 2(6): p.500-502. 14. H.U. Winkler and H.D. Beckey, Field desorption mass spectrometry of peptides. Biochemical and Biophysical Research Communications, 1972. 46(2): p.391-398. 15. J. B. Fenn, et al, Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p.64-71. 16. L. Konermann and D. J.Douglas, Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: Distinguishing two-state from multi-state transitions. Rapid Communications in Mass Spectrometry, 1998. 12 (8): p.435–442. 17. M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 1988. 60(20): p.2299–2301. 18. R.C. Beavis and B.T. Chait, Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation. Rapid Communications in Mass Spectrometry, 1989. 3(12): p.436–439. 19. M. Karas and U. Bahr, Laser Desorption Ionization Mass Spectrometry of Large Biomolecules. Trends in Analytical Chemistry, 1990. 9(10): p.321–325. 20. H.R. Morris, et al, Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochemical and Biophysical Research Communications, 1981. 101(2): p.623–631. 21. M. Barber, et al, Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. Journal of the Chemical Society, Chemical Communications, 1981. (7): p.325–327. 22. D. F. Torgerson, et al, New approach to the mass spectroscopy of non-volatile compounds. Biochemical and Biophysical Research Communications, 1974. 60(2): p.616-621. 23. R.D. Macfarlane and D.F. Torgerson, Californium-252 plasma desorption mass spectroscopy. Science, 1976. 191(4230): p.920-925. 24. R. G. Cooks, et al, Advances in Mass Spectrometry, Longevaille, P., Ed.; Heyden & Son: London, 1989. Vol. 11A. 25. K. J. Wu and R. W. Odom, Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Analytical Chemistry, 1996. 68(5): p.873-882. 26. L. Adriaensen, et al, Matrix-enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Communications in Mass Spectrometry, 2005. 19(8): p.1017-1024. 27. B. Hagenhoff, et al, ToF-SIMS: Surface Analysis by Mass Spectrometry, IM Publications and SurfaceSpectra Limited, 2001. p.285-308. 28. H. Nygren, et al, A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging TOF-SIMS. Colloids and Surfaces B: Biointerfaces, 2003. 30: p.87-/92. 29. Vasil Vorsa, et al, Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via α-cleavage reactions. The Journal of Physical Chemistry B, 1999. 103(37): p.7889-7895. 30. K. Wittmaack, Secondary-ion emission from silicon bombarded with atomic and molecular noble-gas ions. Surface Science, 1979. 90(2): p.557-563. 31. S.S. Johar and D.A. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films. Surface Science, 1979. 90(2): p.319-330. 32. H. H. Andersen and H. L. Bay, Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics, 1974. 45(2): p.953-954. 33. M.G. Blain, et al, A new experimental method for determining secondary ion yields from surfaces bombarded by complex heterogeneous ions. Journal of Vacuum Science & Technology A, 1990. 8(3): p.2265-2268. 34. Z. Postawa, et al, Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag{111} as explored by molecular dynamics simulations. Analytical Chemistry, 2003. 75(17): p.4402-4407. 35. Z. Postawa, et al, Microscopic Insights into the Sputtering of Ag{111} Induced by C60 and Ga Bombardment. The Journal of Physical Chemistry B, 2004. 108(23): p.7831-7838. 36. John S. Fletcher, et al, C60, buckminsterfullerene: its impact on biological ToF-SIMS analysis. Surface and Interface Analysis, 2006. 38(11): p.1393-1400. 37. H.W. Kroto, et al, C60: Buckminsterfullerene. Nature, 1985. 318 (6042): p.162–163. 38. Michael J. Van Stipdonk, et al, A Comparison of Desorption Yields from C60 to Atomic and Polyatomic Projectiles at keV Energies. Rapid Communications in Mass Spectrometry, 1996. 10(15): p.1987-1991. 39. S.C.C. Wong, et al, Development of a C60+ ion gun for static SIMS and chemical imaging. Applied Surface Science, 2003. 203-204: p.219-222. 40. D. Weibel, et al, A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Analytical Chemistry, 2003. 75(7): p.1754-1764. 41. N. Sanada, et al, Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis. Surface and Interface Analysis, 2004. 36(3): p.280-282. 42. R. Kersting, et al, Influence of primary ion bombardment conditions on the emission of molecular secondary ions. Applied Surface Science, 2004. 231-232: p.261-264. 43. A. Tempez, et al, Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions. Rapid Communications in Mass Spectrometry, 2004. 18(4): p.371-376. 44. D. E. Weibei, et al, C60 cluster ion bombardment of organic surfaces. Applied Surface Science, 2004. 231-232: p.146-152. 45. E.A. Jones, et al, ToF-SIMS analysis of bio-systems: Are polyatomic primary ions the solution? Applied Surface Science, 2006. 252(19): p.6844-6854. 46. G. Gillen, et al, Depth profiling using C60+ SIMS—deposition and topography development during bombardment of silicon. Applied Surface Science, 2006. 252(19): p.6521-6525. 47. N. Davies, et al, Development and experimental application of a gold liquid metal ion source. Applied Surface Science, 2003. 203-204: p.223-227. 48. D. Touboul, et al, Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. Journal of The American Society for Mass Spectrometry, 2005. 16(10): p. 1608-1618. 49. S. parry and N. Winograd, High-resolution ToF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Analytical Chemistry, 2005. 77(24): p.7950-7957. 50. John S. Fletcher, et al, ToF-SIMS 3D biomolecular imaging of xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry, 2007. 79(6): p.2199-2206. 51. A. Wucher, et al, Molecular depth profiling of histamine in ice using a buckminsterfullerene probe. Analytical Chemistry, 2004. 76(24): p.7234-7242. 52. A. Wucher, et al, Molecular depth profiling in ice matrices using C60 projectiles. Applied Surface Science, 2004. 231-232: p.68-71. 53. J. Cheng and N. Winograd, Depth profiling of peptide films with TOF-SIMS and a C60 probe. Analytical Chemistry, 2005. 77(11): p.3651–3659. 54. Y. Y. Chen, et al, X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering. Analytical Chemistry, 2008. 80(2): p.501-505. 55. W.C. Lin, et al, The role of the auxiliary atomic ion beam in C60+–Ar+ co-sputtering. Analyst, 2011. 136(5): p.941-946. 56. B. Y. Yu, et al, Depth profiling of organic films with X-ray photoelectron spectroscopy using C60+ and Ar+ co-sputtering. Analytical Chemistry, 2008. 80(9): p. 3412-3415. 57. B.Y. Yu, et al, Effect of fabrication parameters on three-dimensional nanostructures and device efficiency of polymer light-emitting diodes. ACS NANO, 2010. 4(5): p.2547-2554. 58. Y. W. You, et al, Molecular Dynamic-Secondary Ion Mass Spectrometry (D-SIMS) Excited by C60+-Ar+ Co-Sputtering. Journal of the American Society of Mass Spectrometry (submitted on 2011/4/2). 59. Wikimedia Commons. SIMS - Secondary Ion Mass Spectrometry, instrument scheme. 60. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.536, Figure 18-10. 61. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.532, Figure 18-5. 62. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.534, Figure 18-8. 63. Website on Electro-Optics Research Center, University of Texas at Arlington. Research - Ellipsometry - schematic of the geometry of an ellipsometry experiment.
|