跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴姿羽
研究生(外文):Tzu-Yu Lai
論文名稱:4-乙烯基啶高分子與扇狀苯甲酸衍生物形成之超分子的相分離行為與結構分析
論文名稱(外文):Phase Behaviors and Structures of Supramolecules Formed by 4-Vinylpyridine-Based Polymers and Fan-Like Benzoic Acid Derivatives
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試委員:廖文彬賴偉淇
口試委員(外文):Wen-Bin LiauWei-Chi Lai
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:86
中文關鍵詞:氫鍵超分子相分離行為高結晶性階層式自組裝結構六角最密堆積柱狀結構
外文關鍵詞:hydrogen bondingsupramoleculesphase behaviorhighly crystallinehierarchical structurehexagonally packed cylinder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討扇狀苯甲酸衍生物與4-乙基&;#21537;啶高分子(P4VP與PS-b-P4VP)藉由氫鍵所組成之超分子的相行為與結構,其中使用的扇狀小分子包含 3,5-bis(hexadecyloxyl)benzoic acid (BA2) 與3,4,5-tris(hexadecyloxyl)benzoic acid (BA3),分別帶有兩條與三條16個碳的長碳鏈。我們利用傅立葉轉換紅外光譜儀(FTIR)偵測P4VP鏈段上&;#21537;啶環之特徵吸收峰值變化來判定小分子在超分子結構中的氫鍵鍵結程度,發現在P4VP(BA3)系統中其鍵結程度並不是隨小分子的添加而單調增長,而是當添加的BA3:4VP莫爾比例達到~0.7時呈現最大值,隨後便隨小分子的增加而遞減。其主要原因是BA3小分子具有高度結晶性且容易自我聚集,過量的小分子將引發巨觀相分離並生成小分子的結晶相,使得BA3小分子與P4VP上之&;#21537;啶環的鍵結數目降低。我們進一步藉由示差掃描熱量分析儀(DSC)鑑定其相對應的超分子熱性質,亦利用小角/廣角X光散射儀器(SAXS/WAXS)與偏光顯微鏡(POM)分析其超分子結構,皆印證此巨觀相分離的發生。
此外,我們也探討超分子之形態:當添加的小分子達到P4VP鏈段所能氫鍵鍵結之最大劑量時,由均聚物(homopolymer)組成之P4VP(BA3)超分子會形成小尺度的六角最密堆積柱狀結構(~ 5 nm);在小分子與嵌段共聚物PS-b-P4VP結合而成的超分子中,可藉由調控小分子的含量形成各種不同的嵌段共聚物形態,如層板結構、穿孔層板結構、柱狀結構以及球狀結構等。值得注意的是,P4VP(BA3)鏈段在共聚物中可以維持小尺度的六角最密堆積柱狀結構,因而形成球結構中有柱結構的階層式形態。本研究結果有助於調控超分子結構並避免巨觀相分離行為的發生。


In this work, we investigated the supramolecular complexes of fan-like small molecules and 4-vinylpridine based polymers via hydrogen bonding interactions. The fan-like molecules are the carboxylic acid derivatives with different number of hexadecyl tails, including 3,5-bis(hexadecyloxyl)benzoic acid (BA2) and 3,4,5-tris(hexadecyloxyl)-benzoic acid (BA3). We firstly used FTIR to investigate the degree of small molecules associated onto pyridine groups in the complexes of BA and homopolymer poly(4-vinylpyridine)(P4VP). It is interesting to find that for P4VP(BA3)x, where x is the molar ratio of added BA3 to P4VP repeating unit, the degree of complexation is not monotonically increased with x but reaches a maximum at x ~ 0.7 and then decreased as x is increased. Since BA3 is highly crystalline and tends to self-aggregate, an excess BA3 induces a macrophase separation that leads to the formation of a pure BA3 crystalline phase, thus reducing the number of BA3 molecules hydrogen-bonded with pyridine. The corresponding thermal behaviors of the supramolecules are confirmed by differential scanning calorimetry (DSC) measurements and the resulting structures are verified by X-ray scattering and polarized optical microscopy (POM) measurements.
In addition, we have studied the morphology of the supramolecules. Around the upper limit of complexation without macrophase separation, the homopolymer supramolecules P4VP(BA3) form small-scaled hexagonally packed cylinders, ~ 5 nm. When BA3 is incorporated into polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP), a variety of block copolymer-scaled structures, including lamella, perforated lamella, cylinder, and sphere are formed dependent on the amount of incorporated BA3. Furthermore, the small-scaled hexagonally packed cylinders can be maintained in the P4VP(BA3) blocks and a rarely seen hierarchical cylinder-within-sphere can be obtained. The present studies provided a better understanding of supramolecules containing highly crystalline components and demonstrated the feasibility of tailoring supramolecules without macrophase separation.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 4
2.1 Hydrogen-Bonded Comb-like Supramolecules 4
2.2 Morphology Evolution of Block Copolymer 8
2.3 Macro- and Micro-phase Separation in Supramolecular Assemblies 12
2.4 Phase Behavior in Thin Film of Block Copolymer 19
Chapter 3 Experimental Section 23
3.1 Materials 23
3.1.1 Supramolecule Sample Preparation 23
3.1.2 Film Preparation 24
3.2 Instruments 25
3.2.1 Fourier Transform Infrared Spectroscopy (FTIR) 25
3.2.2 Differential Scanning Calorimeter (DSC) 25
3.2.3 Transmission Electron Microscopy (TEM) 25
3.2.4 Atomic Force Microscopy (AFM) 26
3.2.5 Polarized Optical Microscopy (POM) 26
3.2.6 Small-Angle X-ray Scattering (SAXS)/Wide-Angle X-ray Scattering (WAXS) 27
3.2.7 Grazing-Incidence Small-Angle X-ray Scattering (GISAXS)/ Grazing-Incidence Wide-Angle X-ray Scattering (GISAXS) 27
Chapter 4 Results and Discussion 28
4.1 Series of P4VP(BA)x Samples 28
4.1.1 Complex Formation via Hydrogen Bonding 28
4.1.2 Structural Analysis of P4VP(BA)x Samples 31
4.1.3 Thermal behavior of P4VP(BA3)x Samples 34
4.1.4 Temperature-Dependent Structures of P4VP(BA3)x Samples 37
4.1.5 Structure Orientation of P4VP(BA3)x Thin Films 40
4.2 Series of PS-b-P4VP(BA)x Samples 66
4.2.1 Block Copolymer Surpamolecules via Hydrogen Bonding. 66
4.2.2 Morphology Evolution of Block Copolymer Surpamolecules 67
4.2.3 Thermal Behavior of the PS-b-P4VP(BA3)x Samples 70
Chapter 5 Conclusion 82
REFERENCE 84


REFERENCE

[1]Korhonen, J.T.; Verho, T.; Rannou, P.; and Ikkala, O. Macromolecules, 2010, 43(3), 1507–1514.
[2]Faber, M.; Hofman, A. H.; Polushkin, E.; van Ekenstein, G. A.; Seitsonen, J.; Ruokolainen, J. ; Loos, K.; ten Brinke, G., Macromolecules 2013, 46, 500&;#8722;517.
[3]Perepichka, I. I.; Borozenko, K.; Badia, A.; Bazuin, C. G. J. Am. Chem. Soc. 2011, 133, 19702–19705.
[4]Antonietti, M.; Conrad, J.; Thunemann, A. Macromolecules, 1994, 27, 6007&;#8722;6011.
[5]Zhang, M. F.; Muller, Axel H. E. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 3461–3481.
[6]Chen, S. A.; Ni, J. M. Macromolecules 1992, 25, 6081.
[7]Hsu, W. P.; Levon, K.; Ho, K. S.; Myerson, A. S.; Kwei, T. K. Macromolecules 1993, 26, 1318.
[8]Ikkala, O. and ten Brinke, G. Science 2002, 295, 2407.
[9]J. Ruokolainen, G. ten Brinke, O. T. Ikkala, Adv. Mater., 1999, 11, 777.
[10]Chao, C. Y.; Li, X. F.; Ober, C. K.; Osuji, C.; Thomas, E. L. Adv. Funct. Mater. 2004, 14, 364–370.
[11]Kosonen, H.; Ruokolainen, J.; Knaapila, M.; Torkkeli, M.; Serimaa, R.; Bras, W.; Monkman, A. P.; ten Brinke, G.; Ikkala, O. Synth. Met. 2001, 121, 1277–1278.
[12]Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho, M.; ten Brinke, G.; Ikkala, O. Macromolecules 1996, 29, 6621&;#8722;6628.
[13]Ruokolainen, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Macromolecules 1996, 29, 3409&;#8722;3415.
[14]Wang, S. J.; Xu, Y. S.; Yang, S. and Chen, E. Q. Macromolecules 2012, 45, 8760&;#8722;8769.
[15]Forster S. and Plantenberg T. Angew. Chem. Int. Ed. 2002, 41, 688-714.
[16]Khandpur A. K.; Forster S.; Bates F. S.; Hamley I.W.; Ryan A. J.; Bras W.; Almdal K. and Mortensen K. Macromolecules 1995, 28, 8796-8806.
[17]Leibler L. Macromolecules 1980, 13, 1602-1617.
[18]Matsen M. W. and Bates F. S. Macromolecules 1996, 29, 1901-1908.
[19]Bucknall D. G. and Anderson H. L. Science 2003, 302(5652), 1904-1905.
[20]Tung, S. H.; Kalarickal, N. C.; Mays, J. W.; Xu, T. Macromolecules 2008, 41, 6453-6462.
[21]Tung, S. H.; Xu, T. Macromolecules 2009, 42, 5761–5765.
[22]Korhonen, J. T.; Verho,T.; Rammou, P.; Ikkala, O. Macromolecules 2010, 43,1507-1514.
[23]Wu, S. and Bubeck, C. Macromolecules 2013, 46, 3512-3518.
[24]Walker, J. S. and Vause, C. A. Sci. Am. 1987, 256, 98-105.
[25]Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280(5363), 557-560.
[26]Rancatore, B. J.; Mauldin, C. E.; Frechet, Jean M. J.; Xu, T. Macromolecules 2012, 45, 8292-8299.
[27]Bai, P.; Kim, M. I.; Xu, T. Macromolecules 2013, 46, 5531-5537.
[28]Kim, G. and Libera, M. Marcromolecules 1998, 31, 2569-2577.
[29]Fukunaga, K.; Hashimoto, T.; Elbs, H.; Krausch, G. Marcromolecules 2002, 35, 4406-4413.
[30]Knoll, A.et al. Physical Review Letters 2002, 89,035501.
[31]Huamg, W. H., Chen, P. Y. and Tung, S. H. Macromolecules 2012, 45, 1562-1569.
[32]Takahashi, H.; Mamola, K; Pyler, E. K. J. Mol. Spectrosc.1966, 21, 217-230.
[33]Lee, J. Y.; Painter, P. C.; Coleman, M. M. Macromolecules 1988, 21, 954-960.
[34]Luyten, M. C.; Alberda van Ekenstein, G. O. R.; ten Brinke, G.; Ruokolainen, J.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Marcromolecules 1999, 32, 4404-4410.
[35]Walker, J. S. and Vause, C. A., Sci. Am., 1987, 256, 98
[36]Soininen, A. J.; Tanionou, I.; ten Brummelhuis, N.; Schlaad, H.; Hadjichristidis, N.; Ikkala, O.; Raula, J.; Mezzenga, R. and Ruokolainen, J. Macromolecules 2012, 45, 7091&;#8722;7097.
[37]Yang, L.; Gido, S. P.; Mays, J. W.; Pispas, S. and Hadjichristidis, N. Macromolecules 2001,34(12), 4235–4243.
[38]Vukovic, I.; ten Brinke, G. and Loos K. Macromoleucles 2012, 45, 9409-9418.
[39]Ikkala, O.; Ruojolainen, J.; Torkkeli, M.; Serimaa, R. and ten Brinke, G. Macromolecular Symposia 1996, 112,191-198.
[40]Ruojolainen, J.; Torkkeli, M.; Serimaa, R.; Komanschek E.; ten Brinke, G. and Ikkala, O. Macromolecules 1997, 30, 2002-2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊