跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辜靖雯
研究生(外文):KU, CHIN-WEN
論文名稱:龍眼籽與蜜棗核以KOH、Steam和H3PO4活化法製備活性碳之物理化學性質及其應用
論文名稱(外文):Physical and Chemical Properties and Application of Activated Carbon Prepared from Longan Seeds and Jujube Seeds with KOH, Steam and Phosphoric Acid Activation
指導教授:吳豐智
指導教授(外文):Wu, FENG-CHIN
口試委員:劉炳嵐曾如玲
口試委員(外文):LIU, BING-LANTSENG, RU-LING
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:173
中文關鍵詞:龍眼籽蜜棗核活性碳二氧化碳吸附比電容值
外文關鍵詞:longan seedsjujube seedsactivated carboncarbon dioxide adsorptioncapacitance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究以龍眼籽(L)和蜜棗核(J)為原料,以水蒸氣、磷酸和KOH活化法製備活性碳,並利用BET、TGA、FTIR、EA、SEM等檢測探討其物化性質,且應用於電化學和染料、酚類、咖啡因、CO2吸附。龍眼籽活性碳KOH系列(LK)依KOH/Char比值為LK1.5、LK2和LK2.5,以LK2.5之BET比表面積1410 m2/g最高。三種活化法之水蒸氣龍眼籽活性碳(LSA)、磷酸龍眼籽活性碳(LPA)和LK2之BET比表面積為1047-1067 m2/g;蜜棗核活性碳KOH系列(JK)有JK2、JK2.5、JK3.5,以JK3.5之BET比表面積1698 m2/g最高。蜜棗核活性碳之JK2和水蒸氣活性碳(JSA)BET比表面積相近,以及JK2.5與磷酸活性碳(JPA)相近。探討比表面積相近之三組活性碳吸附染料、酚類、咖啡因之吸附動力學以I.D. Model解析,有良好適宜性。二氧化碳之吸附量以LK2和JK3.5較佳,其吸附量分別為2.482 mol/kg 和2.065 mol/kg。而電化學測試,以JK3.5於HNO3電解液中,掃描速率從20 mV/s增加至200 mV/s時,比電容值降幅最少;以LK1.5於HNO3電解液中,其比電容值達164.5 F/g為最佳。
The study utilizes longan seeds (L) and jujube seeds (J) as raw materials to produce activated carbon via steam, phosphoric acid, and KOH activation, exploring and discussing the physical and chemical properties with analytical methods such as BET, TGA, FTIR, EA, and SEM. In addition, the study applies the results of the analysis in electrochemistry and in the adsorption of dyes, phenols, caffeine, and CO2. Longan seed activated carbons created with KOH (LK) ranked with KOH/Char include LK1.5, LK2, and LK2.5, where LK2.5 has the highest BET specific surface area of 1410 m2/g. The longan seed activated carbons created with three types of activation methods including steam (LSA), phosphoric acid (LPA), and KOH (LK2) has BET specific surface area of 1047-1067 m2/g. Jujube seed activated carbons created with KOH (JK) ranked with KOH/Char include JK2, JK2.5 and LK3.5, where JK3.5 has the highest BET specific surface area of 1698 m2/g. Among the jujube seed activated carbons, JK2 and steam activated carbon (JSA) have similar BET specific surface area and JK2.5 and phosphoric acid activated carbon (JPA) are also similar. To explore the adsorption kinetics of the three groups of activated carbon with similar specific surface areas in the adsorption of dyes, phenols, and caffeine, I.D. Model was used and found to be appropriate. CO2 adsorption is superior for LK2 and JK3.5 with adsorption of 2.482 mol/kg and 2.065 mol/kg respectively. In electrochemical test, JK3.5 in HNO3 electrolyte shows the least decrease in specific capacitance where the scan rate increases from 20 mV/s to 200 mV/s, while LK1.5 in HNO3 electrolyte demonstrates the best specific capacitance of 164.5 F/g.
摘要
Abstract
目錄
表目錄
圖目錄
符號說明
第一章 前言
1.1 研究緣起與目的
1.2 研究內容
第二章 文獻回顧
2.1 龍眼與蜜棗簡介
2.2 活性碳種類
2.3 活性碳孔隙結構
2.4 活性碳的製備技術
2.4.1碳化(Carbonization)
2.4.2 活化(Activation)
2.5 活性碳吸附現象
2.6 吸附動力學
2.7 二氧化碳(CO2)之吸附
2.8 電化學應用
第三章 實驗方法
3.1 實驗儀器及藥品
3.2活性碳製備
3.2.1 KOH活化法
3.2.2 H3PO4活化法
3.2.3 Steam活化法
3.3 活性碳之物化性質
3.3.1 BET孔徑特性分析
3.3.2 熱重分析 (Thermogravimetric analysis;TGA)
3.3.3掃描式電子顯微鏡(Scanning electron microscope;SEM)
3.3.4元素分析(Elemental analysis;EA)
3.3.5傅氏轉換紅外線光譜分析(Fourier transform infraredspectroscopy;FTIR)
3.4 液相吸附實驗
3.4.1吸附動力學
3.4.2 吸附平衡
3.5 二氧化碳吸附實驗
3.6 電化學測試
3.6.1 電極製備
3.6.2 循環伏安法
第四章 結果與討論
4.1 龍眼籽和蜜棗核活性碳之物化性質
4.1.1 蜜棗核活性碳
4.1.2 龍眼籽活性碳
4.2 活性碳應用於二氧化碳吸附
4.2.1 龍眼籽活性碳於吸附CO2之應用
4.2.2 蜜棗核活性碳於吸附二氧化碳之應用
4.3活性碳於電化學之應用
4.3.1 龍眼籽活性碳於電化學之應用
4.3.2 蜜棗核活性碳於電化學之應用
4.4 吸附動力學
4.4.1 龍眼籽活性碳之吸附動力學
4.4.2 蜜棗核活性碳之吸附動力學
4.5 吸附平衡
4.5.1 龍眼籽活性碳之吸附平衡
4.5.2 蜜棗核活性碳之吸附平衡
第五章 結論
附錄A
附錄A1 龍眼籽活性碳吸附染料之動力學
附錄A2 龍眼籽活性碳吸附酚類之動力學
附錄A3 龍眼籽活性碳吸附咖啡因之動力學
附錄B
附錄B1 蜜棗核活性碳吸附染料之動力學
附錄B2 蜜棗核活性碳吸附酚類之動力學
附錄B3 蜜棗核活性碳吸附咖啡因之動力學
參考文獻

Abioye, A. M., & Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews, 52, 1282-1293.

Al-Lagtah, N. M. A., Al-Muhtaseb, A. a. H., Ahmad, M. N. M., & Salameh, Y. (2016). Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous and Mesoporous Materials, 225, 504-514.

Al Bahri, M., Calvo, L., Gilarranz, M. A., & Rodriguez, J. J. (2012). Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water. Chemical Engineering Journal, 203, 348-356.

Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2014). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian journal of chemistry, 10(S3381-S3393).

Bang, J. H., Lee, H.-M., An, K.-H., & Kim, B.-J. (2017). A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors. Applied Surface Science, 415, 61-66.

Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Macías-García, A., & Gómez-Serrano, V. (2015). Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Microporous and Mesoporous Materials, 209, 90-98.

Barzegar, F., Bello, A., Dangbegnon, J., Manyala, N., & Xia, X. (2017). Asymmetric Carbon Supercapacitor with Activated Expanded Graphite as Cathode and Pinecone Tree Activated Carbon as Anode Materials. Energy Procedia, 105, 4098-4103.
Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286, 476-484.

Björklund, K., & Li, L. Y. (2017). Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge. Journal of Environmental Management, 197, 490-497.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319.

Chaitra, K., Vinny, R., Sivaraman, P., Reddy, N., Hu, C., Venkatesh, K., Vivek, C., Nagaraju, N., Kathyayini, N. (2017). KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. Journal of Energy Chemistry, 26(1), 56-62.

Dai, C., Wan, J., Shao, J., & Ma, F. (2017). Hollow activated carbon with unique through-pore structure derived from reed straw for high-performance supercapacitors. Materials Letters, 193, 279-282.

Demiral, H., Demiral, İ., Karabacakoğlu, B., & Tümsek, F. (2011). Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design, 89(2), 206-213.

Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., & Sanchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage, 85(4), 833-846.

Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., & Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53, 112-121.
Eiroa, M., Vilar, A., Kennes, C., & Veiga, M. C. (2008). Effect of phenol on the biological treatment of wastewaters from a resin producing industry. Bioresour Technol, 99(9), 3507-3512.

Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219-228.

Fu, K., Yue, Q., Gao, B., Sun, Y., & Zhu, L. (2013). Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chemical Engineering Journal, 228, 1074-1082.

Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., & Wang, Y. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chemical Engineering Journal, 217, 345-353.

Ghouma, I., Jeguirim, M., Dorge, S., Limousy, L., Matei Ghimbeu, C., & Ouederni, A. (2015). Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 18(1), 63-74.

Gromadskyi, D. G., Chae, J. H., Norman, S. A., & Chen, G. Z. (2015). Correlation of energy storage performance of supercapacitor with iso -propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities. Applied Energy, 159, 39-50.

Guibal, E., Van Vooren, M., Dempsey, B. A., & Roussy, J. (2006). A review of the use of chitosan for the removal of particulate and dissolved contaminants. Separation Science and Technology, 41(11), 2487-2514.

Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., & Xu, H. (2003). Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes and Pigments, 56(3), 219-229.
Ho, Y.-S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.

Huang, Y., Li, S., Chen, J., Zhang, X., & Chen, Y. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science, 293, 160-168.

Kumar, A., & Jena, H. M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651-658.

Kurissery, S., Kanavillil, N., Verenitch, S., & Mazumder, A. (2012). Caffeine as an anthropogenic marker of domestic waste: A study from Lake Simcoe watershed. Ecological Indicators, 23, 501-508.

Laksaci, H., Khelifi, A., Trari, M., & Addoun, A. (2017). Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. Journal of Cleaner Production, 147, 254-262.

Lee, H.-C., Byamba-Ochir, N., Shim, W.-G., Balathanigaimani, M. S., & Moon, H. (2015). High-performance super capacitors based on activated anthracite with controlled porosity. Journal of Power Sources, 275, 668-674.

Li, S., Han, K., Li, J., Li, M., & Lu, C. (2017). Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials, 243, 291-300.

Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., & Xia, H. (2008). Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products, 28(2), 190-198.

Liou, T.-H. (2010). Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 158(2), 129-142.

Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H., & Wang, Y. (2016). A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 112, 1190-1198.

Lozano-Castelló, D., Calo, J. M., Cazorla-Amorós, D., & Linares-Solano, A. (2007). Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 45(13), 2529-2536.

Luo, G., Huang, H., Lei, C., Cheng, Z., Wu, X., Tang, S., & Du, Y. (2016). Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Applied Surface Science, 366, 46-52.

Mahmood, T., Ali, R., Naeem, A., Hamayun, M., & Aslam, M. (2017). Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4 ; optimization using response surface methodology. Process Safety and Environmental Protection, 109, 548-563.

Marques, S. C., Marcuzzo, J. M., Baldan, M. R., Mestre, A. S., & Carvalho, A. P. (2017). Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chemical Engineering Journal, 321, 233-244.

Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Applied Catalysis A: General, 307(2), 270-274.

Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S., & Morawski, A. W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization, 5, 47-52.

Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149.

Nowicki, P., Kazmierczak, J., & Pietrzak, R. (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technology, 269, 312-319.

Pal, A., Kil, H.-S., Mitra, S., Thu, K., Saha, B. B., Yoon, S.-H., Miyawaki, J., Miyazaki, T., Koyama, S. (2017). Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Applied Thermal Engineering, 122, 389-397.

Park, J. S., Brown, M. T., & Han, T. (2012). Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat Toxicol, 106-107, 182-188.

Qin, C., Chen, Y., & Gao, J.-m. (2014). Manufacture and characterization of activated carbon from marigold straw (Tagetes erecta L) by H3PO4 chemical activation. Materials Letters, 135, 123-126.

Rambabu, N., Azargohar, R., Dalai, A. K., & Adjaye, J. (2013). Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Processing Technology, 106, 501-510.

Rashidi, N. A., & Yusup, S. (2016). An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 13, 1-16.

Ruch, P. W., Cericola, D., Foelske-Schmitz, A., Kötz, R., & Wokaun, A. (2010). Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages. Electrochimica Acta, 55(15), 4412-4420.

Spigarelli, B. P., & Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 1, 69-87.

Sun, Y., Li, H., Li, G., Gao, B., Yue, Q., & Li, X. (2016). Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol, 217, 239-244.

Sun, Y., & Webley, P. A. (2010). Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal, 162(3), 883-892.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10).

Tzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., & Spassov, T. (2016). Mechanochemical and chemical activation of lignocellulosic material to prepare powdered activated carbons for adsorption applications. Powder Technology, 299, 41-50.

Wang, J., Liu, T.-L., Huang, Q.-X., Ma, Z.-Y., Chi, Y., & Yan, J.-H. (2017). Production and characterization of high quality activated carbon from oily sludge. Fuel Processing Technology, 162, 13-19.

Weber, W. J., & Morris, J. C. (1962). Advances in water pollution research:removal of biologically resistant pollutant from waste water by adsorption, In Proceedings of 1st International Conference on Water Pollution Sympowium. Pergamon Press, Oxford, 2, 231-266.

Wu, F.-C., & Tseng, R.-L. (2008). High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials, 152(3), 1256-1267.

Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., & Xing, G. (2014). Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Applied Surface Science, 320, 674-680.
Yorgun, S., Vural, N., & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 122(1-3), 189-194.

Yorgun, S., & Yıldız, D. (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53, 122-131.

Yun, C. H., Park, Y. H., & Park, C. R. (2001). Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon, 39(4), 559-567.

Zhang, J., Gao, J., Chen, Y., Hao, X., & Jin, X. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in Physics, 7, 1628-1633.

Zhang, Y.-J., Xing, Z.-J., Duan, Z.-K., Li, M., & Wang, Y. (2014). Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Applied Surface Science, 315, 279-286.

Zhou, L., Yu, Q., Cui, Y., Xie, F., Li, W., Li, Y., & Chen, M. (2017). Adsorption properties of activated carbon from reed with a high adsorption capacity. Ecological Engineering, 102, 443-450.

王婉伶、張哲瑋、薛吉人(2010),龍眼產業現況及潛力,農業試改所技術服務,第84期,第6-9頁。

邱祝櫻、林永鴻、蘇博信、陳明昭、陳昱初(2013) ,棗之健康管理,102年度重點作物健康管理生產體系及關鍵技術之研發成果發表會論文集,第79-97頁。

譚駿嵩、王志盈(2015),二氧化碳捕獲,科學發展,第510期,第32-37頁。

蕭蕰華、傅崇德(2004),環境工程化學第五版,滄海書局。

楊萬發(2003),水及廢水處理化學,茂昌股份有限公司。

曾如玲(2006),玉米穗軸以KOH化學活化法製備高表面積活性碳及其應用,國立台灣大學環境工程學研究所博士論文。

黃冠茵(2016),茶葉渣與咖啡渣製備高比表面積活性碳之性質與應用,國立聯合大學化學工程學系研究所碩士論文。


黃鉦致(2011),以不同原料和四種活化方法製備活性碳之物理化學與吸附特性,國立聯合大學化學工程學系研究所碩士論文。

吳驊峻(2015),五種活化方法製備玉米軸活性碳與淨水濾芯活性碳之性能比較,國立聯合大學化學工程學系研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊