[1] 朱朔嘉,自體螢光光譜模擬與分析應用於結直腸與子宮頸癌前病變組織診斷,陽明
大學博士論文,民97年。
[2] J. Toft and F. C. Sanchez, “Resolution of overlapping mid-infrared spectra using SIMPLISMA and a second-order derivative approach,” Vibrational Spectroscopy, vol. 10, no. 2, pp. 125-138, Jan. 1996.
[3] L. Antonov and D. Nedeltcheva, “Resolution of overlapping UV–Vis absorption bands and quantitative analysis,” Chem. Soc. Rev., vol. 29, no. 3, pp. 217-227, Apr. 2000.
[4] M. Garcia-Talavera and B. Ulicny, “A genetic algorithm approach for multiplet deconvolution in γ-ray spectra,” Nuclear Instruments and Methods Physics Research Section A, vol. 512, no. 3, pp. 585-594, Oct. 2003.
[5] Y. Hu and J. Liu, “Resolution of overlapping spectra by curve-fitting,” Analytica Chimica Acta, vol. 538, no. 1-2, pp. 383-389, May 2005.
[6] 花士豪,雙積分球系統與Monte Carlo模擬應用於子宮組織自體螢光光譜分析研究,
陽明大學碩士論文,民93年。
[7] 吳志二,蒙地卡羅法應用於子宮頸微組織螢光結構之分析,陽明大學碩士論文,民94年。
[8] D. H Tenberger and T. Gabrecht, “Autofluorescence detection of tumors in the human lung-spectroscopical measurements in situ, in an in vivo model and in vitro,”Photodiagnosis and Photodynamic Therapy, vol. 5, no. 2, pp. 139-147, June 2008.
[9] M. Koetsier and H. L. Lutgers, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is suffcient,” Optics Express, vol. 17, no. 2, pp. 509-519, Jan. 2009.
[10] R. Meerwaldt, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia, vol. 47, no. 7, pp. 1324-1330, July 2004.
[11] N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Analytical Biochemistry, vol. 291, no. 2, pp. 175-197, Apr. 2001.
[12] C. Darwin, On the Origin of Species., London: John Murray, 1859.
[13] J. H. Holland, Adaptation in Natural and Artificial System. Ann Arbor, Michigan: The University of Michigan Press, 1975.
[14] L. J. Fogel, Artificial Intelligence Through Simulated Evolution., New York: Wiley Publishing, 1966.
[15] E. Bagheri and H. Deldari, “Dejong function optimization by means of a parallel approach to fuzzified genetic algorithm,” in Proc. 11th IEEE Symposium on Computers and Communications, Washington, DC, June 2006, pp. 675-680.
[16] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution., Suttgart: Frommann-Holzboog, 1973.
[17] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, Nov./Dec. 1995, vol. 4, pp. 194-1948.
[18] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proc. IEEE International Conference on Evolutionary Computation, Indianapolis, Apr. 1997, pp. 303-308.
[19] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioral model,” in Proc. 14th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, July 1987, vol. 21, no. 4, pp. 25-34.
[20] J. Kennedy and R. C. Eberhart, and Y. H. Shi, Swarm Intelligence, San Francisco,California: Morgan Kaufmann Publishers, 2001.
[21] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micromachine Human Sci., Nagoya, Japan, Oct. 1995, pp.39-43.
[22] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: evelopments, applicationsand resources,” in Proc. IEEE Congress on Evolutionary Computation, Seoul, Korea, May 2001, pp. 81-86.
[23] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood topology on particle swarm optimization performance,” in Proc. the 1999 Congress on Evolutionary Computation, Washington, DC, July 1999, vol. 3, pp. 1931-1938.
[24] J. Kennedy and R. Mendes, ” Population structure and particle swarm performance,”in Proc. of the IEEE Congress on Evolutionary Computation, Honolulu, HI, May 2002, vol. 2, pp. 1671-1676.
[25] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE International Conference on Evolutionary Computation, Anchorage, AK, May 1998, vol. 1, pp. 69-73.
[26] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proc. IEEE Congress on Evolutionary Computation, La Jolla, CA, July 2000, pp. 84-88.
[27] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability and convergence in a multidimensional complex space,” IEEE Trans. Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb. 2002.
[28] I. C. Trelea, ”The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, vol. 85, no. 6, pp. 317-325, Mar. 2003.
[29] J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in Proc. IEEE Congress on Evolutionary Computation, Honolulu, HI, May 2002, pp. 1671-1676.
[30] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler,maybe better,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 204-210, June 2004.
[31] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks,” in Proc. the IEEE Swarm Intelligence Symposium, Indianapolis, IN, Apr. 2003, pp. 110-117.
[32] H. Schwefel, Evolution and Optimum Seeking, New York: Wiley, 1995.
[33] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made faster,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 82-102, July 1999.
[34] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proc. IEEE Congress on Evolutionary Computation, Washington, DC, July 1999, pp. 1945-1950.
[35] 林立武,建構改良式基因演算法應用於皮膚自體螢光光譜分離系統,國立高雄大學
碩士論文,民99 年。