跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊承學
研究生(外文):Cheng-Hsueh Chuang
論文名稱:導入改良型粒子群尋優演算法於解決自體螢光光譜重疊現象
論文名稱(外文):The Resolution of Overlapping Autofluorescence Spectrum Using A Modified Particle Swarm Optimization Algorithm
指導教授:陳春僥
指導教授(外文):Chuen-Yau Chen
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:128
中文關鍵詞:粒子群尋優演算法重疊光譜皮膚自體螢光
外文關鍵詞:PSOoverlapping spectrumskin autofluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們將改良型粒子群尋優演算法應用於重疊光譜的分離,其中演算法中的速度更新藉由慣性權重與收縮係數的概念來進行改良,提升準確度與收斂速度,並成功地應用於人體自體螢光光譜分離。實驗是採337nm之氮氣雷射利用Y型光纖照射於皮膚表面,使之激發出400 nm 到600 nm的自體螢光訊號,同時利用光譜儀記錄數據。我們透過三種實驗設計並與其他演算法比較。就適應函數值而言,本論文提出之演算法可達到較高之適應函數值1。就收斂速度而言,本論文提出之演算法在人體皮膚自體螢光訊號的實驗中,可用0.67倍於基因演算法的個體(粒子)數並以15倍快的速度成功地分離出兩種手腕皮膚內的螢光物質:煙鹼醯胺腺嘌呤二核甘酸成份比例為96.3533 % 和黃素腺嘌呤二核甘酸成份比例為3.6467 %。
In this thesis, we take an improved particle swarm optimization algorithm for the separation of overlapping spectra where the speed update is the major improvement. Taking advantage of the concepts of inertia factor and constriction coefficient in the proposed algorithm, the convergence rate and the accuracy are significant improved. In the experiments, we used an optical Y-type fiber to conduct excitation light from the 337-nm nitrogen laser (VSL-337ND-S, LSI) to irradiate on the skin surface so that we could get an excitation fluorescence signal with the wavelength ranging from 400 nm to 600 nm. We collected the data from the skin to the spectrometer (SP-150, Princeton Instrument). We designed three experiments and compared the results with other algorithms. For the fitness function values, this algorithm achieves a higher fitness value about 1. For the convergence rate, this algorithm can successfully separate two fluorescent wrist skin materials in the signal of human skin autofluorescence experiment with 67% of individuals (particles) and 15 times of speed as compared with the genetic algorithm. The experimental results show that the content ratios of reduced-nicotinamide-adenine-dinucleotide and flavin-adenine-dinucleotide are 96.3533% and 3.6467%, respectively.
摘要.................................... I
ABSTRACT ............................... II
誌謝 ................................... III
目錄 ....................................IV
表目錄 ................................. XII
第 1 章 緒論 ........................... 1
1.1 簡介 ............................... 1
1.2 文獻探討 ........................... 2
1.2.1 光譜分離 ......................... 2
1.2.2 自體螢光 ..........................2
1.2.3 研究動機 ..........................3
1.3 論文架構 ............................5
第 2 章 光譜分離 ........................6
2.1 引言 ................................6
2.2 自體螢光光譜訊號 ....................6
2.3 導數光譜 ........................... 7
2.4 導數光譜適用性的討論 ............... 11
2.4.1 二階導數與四階導數之適用性 ....... 11
2.4.2 強度固定、半高寬倍數變動的情況 ....13
2.4.3 強度倍數變動與半高寬倍數變動的情況 .. 15
2.4.4 討論 ................................ 17
第 3 章 粒子群尋優演算法 .................. 19
3.1 引言 .................................. 19
3.2 粒子群尋優演算法的初始化 .............. 21
3.2.1 粒子群尋優演算法架構 ................ 24
3.2.2 族群大小 ............................ 25
3.2.3 最大速度 ............................ 26
3.3 鄰域拓樸 .............................. 26
3.3.1 星狀拓樸 ............................ 27
3.3.2 環狀拓樸 ............................ 28
3.3.3 馮諾伊曼拓樸 ........................ 29
3.4 粒子群尋優演算法的改良 ................ 29
3.4.1 慣性權重 ............................ 29
3.4.2 收縮係數 ............................ 30
3.4.3 改良型粒子群尋優演算法 .............. 36
3.5 測試函數 .............................. 41
3.5.1 操作環境 ............................ 42
3.5.2 函數 ................................ 43
I. Sphere 函數............................. 43
II. Rosenbrock 函數........................ 44
III. Griewank 函數 ........................ 44
IV. Generalized Schwefel’s 函數 .......... 46
3.5.3 實驗數據 ............................ 46
3.5.4 Sphere 函數測試結果比較.............. 48
3.5.5 Rosenbrock 函數測試結果比較.......... 49
3.5.6 Griewank 函數測試結果比較 ........... 50
3.5.7 Generalized Schwefel’s 函數測試結果比較 .... 51
3.6 討論 .................................. 56
第 4 章 粒子群尋優演算法導入光譜分離 ...... 58
4.1 引言 .................................. 58
4.2 實驗設計背景 .......................... 58
4.3 光譜訊號實驗設計 ...................... 59
4.3.1 適應函數的設定 ...................... 63
4.3.2 真實自體螢光訊號取得與處理 .......... 63
4.3.3 光譜分離流程 ........................ 70
第 5 章 實驗結果與討論 .................... 71
5.1 引言 .................................. 71
5.2 實驗A:可分離之兩相似高斯函數合成光譜參數測試 ...... 71
5.3 實驗B:高斯函數合成之近似自體螢光光譜分離 .......... 80
5.4 實驗C:高斯函數光譜分離流程比較 .................... 89
5.4.1 實驗A 的流程比較 ................................. 89
5.4.2 實驗B 的流程比較 ................................. 91
5.4.3 無法使用導數光譜的實驗 ........................... 93
5.5 實驗D:真實人體自體螢光光譜分離 .................... 99
5.6 討論 ............................................... 105
第 6 章 結論與未來研究方向 ............................. 107
6.1 結論 ............................................... 107
6.2 未來研究方向 ....................................... 108
參考文獻 ............................................... 110
[1] 朱朔嘉,自體螢光光譜模擬與分析應用於結直腸與子宮頸癌前病變組織診斷,陽明
大學博士論文,民97年。
[2] J. Toft and F. C. Sanchez, “Resolution of overlapping mid-infrared spectra using SIMPLISMA and a second-order derivative approach,” Vibrational Spectroscopy, vol. 10, no. 2, pp. 125-138, Jan. 1996.
[3] L. Antonov and D. Nedeltcheva, “Resolution of overlapping UV–Vis absorption bands and quantitative analysis,” Chem. Soc. Rev., vol. 29, no. 3, pp. 217-227, Apr. 2000.
[4] M. Garcia-Talavera and B. Ulicny, “A genetic algorithm approach for multiplet deconvolution in γ-ray spectra,” Nuclear Instruments and Methods Physics Research Section A, vol. 512, no. 3, pp. 585-594, Oct. 2003.
[5] Y. Hu and J. Liu, “Resolution of overlapping spectra by curve-fitting,” Analytica Chimica Acta, vol. 538, no. 1-2, pp. 383-389, May 2005.
[6] 花士豪,雙積分球系統與Monte Carlo模擬應用於子宮組織自體螢光光譜分析研究,
陽明大學碩士論文,民93年。
[7] 吳志二,蒙地卡羅法應用於子宮頸微組織螢光結構之分析,陽明大學碩士論文,民
94年。
[8] D. H Tenberger and T. Gabrecht, “Autofluorescence detection of tumors in the human lung-spectroscopical measurements in situ, in an in vivo model and in vitro,”Photodiagnosis and Photodynamic Therapy, vol. 5, no. 2, pp. 139-147, June 2008.
[9] M. Koetsier and H. L. Lutgers, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is suffcient,” Optics Express, vol. 17, no. 2, pp. 509-519, Jan. 2009.
[10] R. Meerwaldt, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia, vol. 47, no. 7, pp. 1324-1330, July 2004.
[11] N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Analytical Biochemistry, vol. 291, no. 2, pp. 175-197, Apr. 2001.
[12] C. Darwin, On the Origin of Species., London: John Murray, 1859.
[13] J. H. Holland, Adaptation in Natural and Artificial System. Ann Arbor, Michigan: The University of Michigan Press, 1975.
[14] L. J. Fogel, Artificial Intelligence Through Simulated Evolution., New York: Wiley Publishing, 1966.
[15] E. Bagheri and H. Deldari, “Dejong function optimization by means of a parallel approach to fuzzified genetic algorithm,” in Proc. 11th IEEE Symposium on Computers and Communications, Washington, DC, June 2006, pp. 675-680.
[16] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution., Suttgart: Frommann-Holzboog, 1973.
[17] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, Nov./Dec. 1995, vol. 4, pp. 194-1948.
[18] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proc. IEEE International Conference on Evolutionary Computation, Indianapolis, Apr. 1997, pp. 303-308.
[19] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioral model,” in Proc. 14th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, July 1987, vol. 21, no. 4, pp. 25-34.
[20] J. Kennedy and R. C. Eberhart, and Y. H. Shi, Swarm Intelligence, San Francisco,California: Morgan Kaufmann Publishers, 2001.
[21] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micromachine Human Sci., Nagoya, Japan, Oct. 1995, pp.39-43.
[22] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: evelopments, applicationsand resources,” in Proc. IEEE Congress on Evolutionary Computation, Seoul, Korea, May 2001, pp. 81-86.
[23] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood topology on particle swarm optimization performance,” in Proc. the 1999 Congress on Evolutionary Computation, Washington, DC, July 1999, vol. 3, pp. 1931-1938.
[24] J. Kennedy and R. Mendes, ” Population structure and particle swarm performance,”in Proc. of the IEEE Congress on Evolutionary Computation, Honolulu, HI, May 2002, vol. 2, pp. 1671-1676.
[25] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE International Conference on Evolutionary Computation, Anchorage, AK, May 1998, vol. 1, pp. 69-73.
[26] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proc. IEEE Congress on Evolutionary Computation, La Jolla, CA, July 2000, pp. 84-88.
[27] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability and convergence in a multidimensional complex space,” IEEE Trans. Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb. 2002.
[28] I. C. Trelea, ”The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, vol. 85, no. 6, pp. 317-325, Mar. 2003.
[29] J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in Proc. IEEE Congress on Evolutionary Computation, Honolulu, HI, May 2002, pp. 1671-1676.
[30] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler,maybe better,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 204-210, June 2004.
[31] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks,” in Proc. the IEEE Swarm Intelligence Symposium, Indianapolis, IN, Apr. 2003, pp. 110-117.
[32] H. Schwefel, Evolution and Optimum Seeking, New York: Wiley, 1995.
[33] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made faster,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 82-102, July 1999.
[34] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proc. IEEE Congress on Evolutionary Computation, Washington, DC, July 1999, pp. 1945-1950.
[35] 林立武,建構改良式基因演算法應用於皮膚自體螢光光譜分離系統,國立高雄大學
碩士論文,民99 年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top