跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧端劭
研究生(外文):Duan Shao Lu
論文名稱:奈米碳管石墨化程度對場發射特性的影響
論文名稱(外文):The effects of CNT graphitization on the field emission characterictics
指導教授:貢中元貢中元引用關係丁志華丁志華引用關係
指導教授(外文):C. Y. KungJ. H. Ting
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:奈米碳管石墨化場發射
外文關鍵詞:carbon nanotubesfield emissiongraphite structurediamond structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由控制不同甲烷流量比與電漿功率和氮氣流量製造出不同製程參數的奈米碳管與二極式奈米碳管場發射元件。並以拉曼光譜分析奈米碳管的D-band與G-band強度,以研究石墨化程度比值,並發現石墨化程度與製程因子的關係,D-band及G-band分別代表鑽石結構及石墨結構的強度。隨著甲烷流量比增加,成長速率雖加快,但是奈米碳管的石墨化程度變差,同時也發現碳管間伴隨著較多的碳渣。隨著加入氮氣後,奈米碳管的成長速率降低,但是石墨化程度變好,奈米碳管的品質較精純且管形越來越筆直。
並由奈米碳管場發射元件的場發射分析發現場發射特性與奈米碳管的D-band/G-band強度比值有關係。比值越小則G-band強度強,表示石墨結構多於鑽石結構,所得到的元件也具有較佳的場發射特性。
關鍵詞:奈米碳管、石墨化、場發射
In this research, the carbon nano tubes (CNTs) are grown by controlling methane flow, plasma power and nitrogen flow. The Raman spectrum is measured to analyze the relative concentration of diamond structure (D-band) and graphite structure (G-band). The growth rate of CNTs increases as the methane flow rate increase, however, the properties of CNT is not as good as that grown by lower flow rate. The tubes are twisty, some carbon black spots are observed in CNTs. The growth rate of CNTs becomes slow when nitrogen is mixed to dilute the reactant, but on the other side the quality of CNTs becomes better and the tubes are more straightly.
The field emission data shoes that the current emitted has certain correlation with the D-band over G-band intensity ratio. The smaller the ratio means the higher the graphite structure concentration in the CNTs, and the better of the emission property. This observation is consistent with morphologic observations mention above.
Key words: Carbon nano tubes, field emission, graphite structure, diamond structure
摘要…………………………………………………………………………….……..…i
Abstract………………………………………………………………………...........…ii
誌謝……………………………………………………………………………........….iii
目錄……………………………………………………………………………..….......iv
圖目錄……………………………………………………………..……….……....…vii
表目錄………………………………………………………………………...………..x
第一章 緒論……………………………………………………………..........……1
1.1前言………………………………………………………………………..…….1
1.2研究動機與目的………………………………………………….…....……..3
第二章 文獻回顧與理論背景…………………………………......….......……5
2.1奈米碳管的發展歷史…………………………………………...……...……5
2.2奈米碳管的結構………………………………………………….....…....…..6
2.3奈米碳管的成長機制…………………………………….…….....…………7
2.4奈米碳管的各種應用與性質………………………………..………..……8
2.4.1奈米碳管作為場發射電子源………………………...………..………9
2.4.2應用在場發射平面顯示器…………………………..…….….………10
2.4.3應用在真空三極元件………………………………………….....……13
2.5製造奈米碳管的幾種製程……………………………….…………..……15
2.5.1弧光放電法…………………………………….................…...….………15
2.5.2石墨熱昇華法………………………………………………...……..…...16
2.5.3碳氫化合物氣相熱分解法…………………………..…….……..……16
2.5.4化學微波電漿沉積法……………………………………….….….…...17
第三章 電子場發射與拉曼光譜…………………………………….…..….…20
3.1場發射顯示器的基本理論…………………………………….….…..……20
3.1.1電子場發射理論………………………….……………………..………20
3.1.2 Fowler-Nordheim Equation………………………………….….…..............22
3.2拉曼光譜 ……………………….……………………………………..…...…24
3.2.1 拉曼效應......………………………………...………………….……..…24
3.2.2 比值計算方法………………………….…………………….….....…......25
第四章 實驗方法與結果…………………………………………...….…….....27
4.1奈米碳管的製備…………………………………………………………….29
4.2實驗因子及水準配置………………………………………………..……..33
4.3製程設備與場發射性質、拉曼光譜量測系統…………………..……33
4.4場發射元件的製作………………………………………………….…..…..36
4.5各製程條件機制對奈米碳管的影響………………………………..…..38
4.5.1未加氮氣下,不同甲烷流量比對奈米碳管的影響………..……39
4.5.2添加氮氣後,不同甲烷流量比對奈米碳管的影響……….……51
第五章 討論………………………………………………..………………..……63
第六章 總結………………………………………………..……………..………65
References......................................................................................................................67
[1] Satyanarayana, B.S.; Kimura, C.; Furuta, H.; Shibagaki, S. “Field emission from novel room temperature grown multilayered nanocarbon field emitters” Vacuum Microelectronics Conference, 2003. Technical Digest of the 16th International , 7-11 July 2003 ,pages:139 - 140
[2] Satyanarayana, B.S. “Low field electron emission from nanocluster carbon films grown using a pulsed trigger less cathodic arc process” Vacuum Microelectronics Conference, 2003. Technical Digest of the 16th International , 7-11 July 2003,pages:171-172
[3] H. D. Li, K. T. Yue, Z. L. Lian, Y. Zhan, L. X. Zhou, S. L. Zhang, Z. J. Shi, Z. N. Gu, B. B. Liu, R. S. Yang, H. B. Yang, and G. T. ZouY. Zhang and S. Iijima “Appl. Phys. Lett., 76, 15,2053 (2000).
[4] Busta, H.; Partee, C.; Joray, S.; Lang, T.; Edwards, E.; Feinerman, A.“Field emission from a polymeric precursor to diamond-like carbon (DLC)” Vacuum Microelectronics Conference, 2003. Technical Digest of the 16th International , 7-11 July 2003 ,pages:175 - 176
[5] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R.E. Smalley, “C60: Buckminster Fullerene”, Nature, 318, 162, 1985.
[6] S. Iijima, “Helical microtubles of graphic carbon”, Nature, 365, pp,56-58 (1991).
[7] M.S. Dresselhune, G. Dresshaus, and R. Saito, “Physics of carbon nanitubes”, Carbon, 33, pp. 883-891 (1995)
[8] J. C. Charlier and J. P. Issi, “Electric structure and quantum transport in carbon nanotubes”, Applied Physics A :Materials Sceience & Processing, 67, pp. 79-87 (1998).
[9] J. W. Mintmire and C. T. White, “First-principles band structures of armchair nanotubes”, Applied Physics A :Materials Sceience & Processing, 67, pp. 65-69
[10] S. Iijima﹐T. Ichihashi﹐Nature 1992﹐356﹐776.
[11] M. S. Dresselhaus﹐G. Dresselhaus﹐K. Sugihara﹐I. L. Spain﹐H. A. Goldberg﹐"Graphite Fibers and Filaments"chapter 2.
[12] L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polyer matrix by mechanical stretching”, Appl. Phys. Lett., 79(9), pp. 1197-1199 (1998).
[13] A. G. Rinzer, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling Nanotubes: Field Emission from an Atomic Wire”, Science, 269, 1550, 1995.
[14] W. A. de Heer, A. chatelaine, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”, Science, 270, 1179, 1995.
[15] P. G. Collins and A. Zettl, “A Simple and Robust Electron Beam Source from Carbon Nanotubes”, Appl. Phys. Lett. 69 (13), 1969, 1996.
[16] H. Schmid and Hans-Werner Fink, “Carbon Nanotubes are Coherent electron Sources”, Appl. Phys. Lett. 70 (20), 2679, 1997.
[17] 顯示器原理與技術,田志豪、趙中興編著,第12章
[18] M. W. Geis, J. A. Gregory, and B. B. Pate, IEEE Trans. Electron Devices vol. 38 p.619, 1991.
[19] C. Wang, A.Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, Electron. Lett. vol. 27, p. 1459,1991.
[20] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “Purification of nanotubes”, Nature, 367, p. 519 (1994).
[21] T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358, pp. 220-221 (1992)
[22] J. M. Lambert, P. M. Ajyan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, and J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes”, Chem. Phys. Lett., 226, pp.364-371 (1994).
[23] Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, pp. 169-182 (2000).
[24] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. scuseria, D. Tomanek, J. E. fischer, and R.E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273. pp. 483-487 (1996).
[25] M. Endo, K. Takeachi, S. Igarashi, K. Kobori, M. Shiraishi, and H.W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, J. Phys. Chem. Solids, 54, pp. 1841-1848 (1993).
[26] B. C. Statishkumar, A. Govindaraj, and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrosis of ferrocene-hydrocarbon mixtures: roles of the metal nanoparticles produces in situ”, Chem. Phys. Lett., 307, pp, 158-162 (1999).
[27] V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt, “The study of carbon nanotubes produced by catalytic method”, Chem. Phys. Lett., 223, pp. 329-335 (1994).
[28] O. M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, “Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma”, Appl. Phys. Lett., 73, pp. 2113-2115 (1998).
[29] R. H. Fowler and I. W. Nordheim, Proc. Roy. Soc. Vol. A 119,p.173, 1928.
[30] Wenzhi Li, Hao Zhang, Chaoying Wang, Yun Zhang, Liwen Xu, Ke Zhu, and Sishen Xie “Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor” Appl. Phys. Lett. 70 (20), 19 (1997).
[31] G. Vitala, M. Rossi, M. L. Terranova, and V. Sessa, J. Appl. Phys. 77, 4307 (1995).
[32] D. G. McCulloch, S. Prawer, and A. Hoffman, Phys. Rev. B 50, 5905 (1994).
[33] V. Barbarossa, F. Galluzzi, R. Tomaciello, and A. Zanobi, Chem. Phys. Lett. 185, 53 (1991).
[34] Guo Zhi-Gang; Pu Yi-Kang; Ma Jie; Zhou Miao-Miao; Zhong Ding-Yong; Zhang Guang-Yu; Wang En-Ge; Plasma Science, 2002. ICOPS 2002. IEEE Conference Record - Abstracts. The 29th IEEE International Conference on , 26-30 May 2002 Pages:266.
[35]. J. A. Nation, L. Schachter, F. M. Mako, L. K. Len, W.. Peter, C. M. Tang, and T. Srinivasan-Rao, Proceeding IEEE vol. 87, p.865,1999.
[36]B. Goplen, L. Ludeking, D. Smithe and G. Warren, MAGIC User’s Manual, Mission Research Corp., MRC/WDC-R-409, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top