跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何鴻耀
研究生(外文):Hung-yao Ho
論文名稱:1.氧化壓力在細胞老化中所扮演之角色:以G6PD缺乏之細胞作探討模式.2.MEKK與T細胞活化之關係
論文名稱(外文):1. Oxidative stress and senescence: a model based on the study of the glucose-6-phosphate dehydrogenase (G6PD)-deficient cells. 2. The role of MEKK in T cell activation.
指導教授:梁啟銘趙崇義趙崇義引用關係
指導教授(外文):Chi-ming LiangTsun-yee Chiu
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:193
中文關鍵詞:老化葡萄糖六磷酸去氫酵素氧化壓力
外文關鍵詞:senescenceglucose-6-phosphate dehydrogenaseoxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
葡萄糖六磷酸去氫酵素在維持細胞中氧化還原平衡扮演重要角色。本論文第一部份茲以缺乏葡萄糖六磷酸去氫酵素之細胞株HFF1探討此酵素在有核細胞之作用。首先HFF1細胞呈現生長遲緩現象。從細胞流體分析結果亦顯示此細胞隨代數增加G1細胞比例快速增加。細胞形態出現老化的特徵:細胞外形呈扁平狀;老化相關的半乳糖酵素(SA-b-Gal)表現增加。且細胞週期抑制分子 p16 (INK4a)、p21 (CIP1) 和 p53 亦有增加。但HSP27和 HSP70量則減少。吾人以外來葡萄糖六磷酸去氫酵素基因送入細胞內表現時,則可以防止此細胞出現生長遲緩和過早老化現象。吾人以DCF染色法得知氧化壓力可能使得細胞過早老化。吾人欲研究老化過程機轉,故嘗試使用基因晶片技術來探討在正常和缺乏葡萄糖六磷酸去氫酵素之細胞株老化時所伴隨之基因表現變化。
本論文第二部份以探討cAMP與MEKK在T細胞活化中的角色。cAMP 可通過抑制細胞介素(cytokine)如淋巴介素二(interleukin 2, IL2)的轉錄來抑制免疫反應。在淋巴介素二(interleukin 2, IL-2)的啟動子上,cAMP通過干擾NF-kB活化來達成其效果。最近吾人發現cAMP亦能抑制JNK的活性。由於JNK在T細胞活化上扮演不可或缺之角色。故吾人欲探討cAMP、JNK和NF-kB活化之間關係。DMEKK的表現可在細胞活化NF-kB的活性,MEK的表現則無此效果。況DMEKK的表現可改變cAMP對NF-kB活化。故cAMP的目標分子可能位於MEKK之上游。且cAMP的抑制效能且受轉錄及轉譯抑制劑影響。吾人推測:cAMP誘導調節性分子的合成,此一分子抑制MEKK/SEK/JNK路徑,從以調控NF-kB的活性。
英文摘要
The first part of the thesis is concerned with the effect of glucose-6-phosphate dehydrogenase (G6PD) deficiency on the physiology of nucleated cells. Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of the cellular redox balance. Biological effects of G6PD were studied using G6PD-deficient human foreskin fibroblasts (HFF). Cell growth parameters, namely, the growth rate and cell cycle profile, were examined in a primary G6PD-deficient cell strain and its normal counterpart. In contrast to that of normal HFF, the doubling time (DT) of G6PD-deficient cells increased steadily from population doubling level (PDL) 15 to 63. This was accompanied by a significant increase in the percentage of G1 cells. The slowdown in growth preceded an early entry of these cells into a non-dividing state reminiscent of cellular senescence. These cells exhibited signs of aging as indicated by large, flattened morphology and senescence-associated b-galactosidase (SA-b-gal) staining. The levels of the cell cycle inhibitor p16 (INK4a) and p21 (CIP1), and the tumour suppressor p53 increased during the process. Meanwhile, an opposite trend was observed in the level of molecular chaperones HSP27 and HSP70. These molecular changes are characteristic of senescent cells. The importance of G6PD activity in cell growth was corroborated by the finding that ectopic expression of active G6PD in the deficient cells prevented their growth retardation and early onset of senescence. Mechanistically, the enhanced fluorescence in dichlorofluorescin (H2DCF)-stained G6PD-deficient cells suggests the possible involvement of reactive oxygen species in senescence. When tested for their sensitivities to a sub-lethal oxidative insult, HFF1 exhibited an increased susceptibility to induction of senescent phenotypes. Taken together, our results show that G6PD deficiency predisposes human fibroblasts to retarded growth and accelerated cellular senescence. Moreover, our G6PD-deficient HFF is envisaged as a model system to delineate the effects of redox alterations on cellular processes.
To gain an insight into the mechanistic aspects of senescence, we examined the genes that were differentially expressed during the normal senescence of HFF3 and the accelerated senescence of HFF1. Analysis was still in progress to illuminate the epi- and genetic changes accompanying senescence.
The second part of the thesis is dealt with the role of MEKK in T cells, using cAMP as a probe for the mechanism of T cell activation. cAMP exerts its effect by inhibition of specific kinases and transcription factors responsible for expression of cytokines, such as IL-2 which play essential roles in activation process. It has been observed that cAMP suppresses IL-2 production at transcriptional level. Of cis-regulatory elements on IL-2 promoter, only the NF-kB site but not the AP-1, Oct nor NF-AT sites is target of suppressive effect of cAMP. However, the upstream signalling pathway involved in NF-kB activation and the step at which cAMP inhibits remain elusive. Recently, it has been shown that cAMP antagonizes c-Jun N-terminal kinase (JNK) while it leaves mitogen activated protein kinase (MAP) almost unaffected. This prompts us to examine the possibility whether JNK pathway is involved in NF-kB activation. Expression of constitutively active form of MAPK kinase kinase, △MEKK, the activator of JNK pathway, induced NF-kB in EL4 cells. On the contrary, expression of MAPK kinase, MEK, did not stimulate NF-kB activity. Interestingly, △MEKK expression did not augment AP-1 activity in EL4 cells, even though it could induce JNK activation, as assayed by phosphorylation of exogenous c-Jun substrate. Unlike most of other transcriptional factors acting on IL-2 promoter, NF-kB does not require dual signals for activation. These findings suggest that NF-kB is specifically and distinctly activated by the MEKK/SEK/JNK cascade. This notion was supported by the fact that expression of △MEKK was able to reverse the effect of cAMP on NF-kB activation. Furthermore, it places MEKK downstream of molecular target of cAMP. Observation that the inhibitory effect of cAMP showed sensitivity to cycloheximide and actinomycin D is intriguing. It is likely that a regulatory molecule is produced in response to cAMP and negatively modulates the MEKK/SEK/JNK pathway. Identification of such regulator will contribute much to our understanding of regulation of MEKK/SEK/JNK cascade.
第一部份
第一部份摘要-------------------------------------------------------------- 04-05頁
第一章
緒論---------------------------------------------------------------------------- 07-08頁
材料與方法------------------------------------------------------------------- 09-13頁
結果---------------------------------------------------------------------------- 14-20頁
討論---------------------------------------------------------------------------- 21-27頁
參考文獻---------------------------------------------------------------------- 28-37頁
圖表---------------------------------------------------------------------------- 38-61頁
第二章
緒論---------------------------------------------------------------------------- 63-64頁
材料與方法------------------------------------------------------------------- 65-66頁
結果---------------------------------------------------------------------------- 67-69頁
討論---------------------------------------------------------------------------- 70-71頁
參考文獻---------------------------------------------------------------------- 72-74頁
圖表---------------------------------------------------------------------------- 75-86頁
第三章
緒論---------------------------------------------------------------------------- 88-89頁
材料與方法------------------------------------------------------------------- 90-92頁
結果---------------------------------------------------------------------------- 93-98頁
討論---------------------------------------------------------------------------- 99-100頁
參考文獻---------------------------------------------------------------------- 101-103頁
圖表---------------------------------------------------------------------------- 104-127頁
第一部份縮寫表------------------------------------------------------------- 128-129頁
第二部份
第二部份摘要---------------------------------------------------------------- 132-133頁
緒論---------------------------------------------------------------------------- 134-142頁
材料與方法------------------------------------------------------------------- 143-148頁
結果---------------------------------------------------------------------------- 149-153頁
討論---------------------------------------------------------------------------- 154-157頁
參考文獻---------------------------------------------------------------------- 158-167頁
圖表---------------------------------------------------------------------------- 168-188頁
縮寫表------------------------------------------------------------------------- 189頁
封面
總目錄
授權書
論文指導委員名冊
指導教授推薦書
博士論文審定書
誌謝
圖表目錄
中文摘要
英文摘要
附錄
第一部份
第一部份摘要
第一章
緒論
材料與方法
結果
討論
參考文獻
圖表
第二章
緒論
材料與方法
結果
討論
參考文獻
圖表
緒論
材料與方法
結果
討論
參考文獻
圖表
第一部份縮寫表
第二部份
第二部份摘要
緒論
材料與方法
結果
討論
參考文獻
圖表
縮寫表
其他
Afshari, C. A., Vojta, P. J., Annab, L. A., Futreal, P. A., Willard, T. B., and Barrett, J. C. (1993). Investigation of the role of G1/S cell cycle mediators in cellular senescence. Exp. Cell Res. 209, 231-237.
Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., and Barrett, J. C. (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl. Acad Sci. 93, 13742-13747.
Bautista, J. M., Mason, P. J., and Luzzatto, L. (1992). Purification and properties of human glucose-6-phosphate dehydrogenase made in E.coli. Biochem. Biophy. Acta 119, 74-80.
Beckman, K. B., and Ames, B. N. (1997). Oxidants, antioxidants and aging. In Oxidative stress, and the Molecular Biology of Antioxidant Defenses (Scandalios, J. G., eds) pp. 201-272, Cold Spring Harbour Laboratory Press, New York.
Berlett, B. S., and Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316.
Best, A. J., Das, P. K., Patel, H. R., and Van Noorden, C. J. (1990). Quantitative cytochemical detection of malignant and potentially malignant cells in the colon. Cancer Res. 50, 5112-5118.
Beutler, E. (1990). The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin. in Hematology 27, 137-164.
Beutler, E. (1991). Glucose-6-phosphate dehydrogenase deficiency. New Eng. J. Med. 324, 169-174.
Bezwoda, W. R., Derman D. P., See, N., and Mansoor, N. (1985). Relative value of oestrogen receptor assay, lactoferrin content, and glucose-6-phosphate dehydrogenase activity as prognostic indicators in primary breast cancer. Oncology 42, 7-12.
Brown, J. P., Wei, W., and Sedivy, J. M. (1997). Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831-834.
Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R. R. (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240-4248.
Chang, Z. F. (1997). Regulatory mechanisms of replication growth limits in cellular senescence. J. Formos. Med. Assoc. 96, 784-791.
Chen, Q., and Ames, B. N. (1994). Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91, 4130-4134.
Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J., and Ames, B. N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA 92, 4337-4341.
Cheng, H. Y., Fu, Y. J., Lee, C. B., Lo, S. K., Hung, C. M., and Chiu, D. T. Y. (1994). Incidence of glucose-6-phosphate dehydrogenase deficiency in blood donors of Taiwan. J. Biomed. Lab. Sci. 6, 43-48.
Chiu, D. T. Y., Zuo, L., Chen, E., Chao, L., Louie, E., Lubin, B., Liu, T. Z., and Du, C. S. (1991). Two commonly occurring nucleotide base substitutions in Chinese G6PD variants. Biochem. Biophys. Res. Comm. 180, 988-993.
Chiu, D. T. Y., Zuo, L., Chao, L., Chen, E., Louie, E., Lubin, B., Liu, T. Z., and Du, C. S. (1993). Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in patients of Chinese descent and identification of new base substitution in the human G6PD gene. Blood 81, 2150-2154.
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., and Campisi, J. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367.
El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.
Fairweather, D. S., Fox, M., and Margison, G. P. (1987). The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation. Exp. Cell Res. 168, 153-159.
Farquhar, J. K., Scott, W. N., and Coe, F. L. (1968). Hexose monophosphate shunt activity in compensatory renal hypertrophy. Proc. Soc. Exp. Biol. Med.129, 809-812.
Freshney, R. I. (1994). Disaggregation of the tissue and primary culture. In Culture of Animal Cells (Freshney, R. I. ed) pp. 127-148, John Wiley and Son, New York.
Ganea, E, and Harding, J. J. (1995). Molecular chaperones protect against glycation-induced inactivation of glucose-6-phosphate dehydrogenase. Eur. J. Biochem. 231, 181-187.
Gilchrest, B. A., and Bohr, V. A. (1997). Aging processes, DNA damage, and repair. FASEB J. 11, 322-330.
Harley, C. B., Futcher, A. B., and Greider, C. W. (1990). Telomeres shorten during aging of human fibroblasts. Nature 345, 458-460.
Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.
Haugland, R. P. (1996). Probes for reactive oxygen species, including nitric oxide. In Handbook of Fluorescent Probes and Research Chemicals (Haugland, R. P., and Spence, M. T. Z., eds) pp. 483-502, Molecular Probes Inc., Oregon.
Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.
Holliday, R. (1986). Strong effects of 5-azacytidine on the in vitro lifespan of human fibroblasts. Exp. Cell Res. 166, 543-552.
Hseuh, Y. P., and Lai, M. Z. (1995). Overexpression of activation transcriptional factor 1 in lymphomas and in activated lymphocytes. J. Immunol. 154, 5675-5683.
Johnson, F. B., Sinclair, D. A., and Guarente, L. (1999). Molecular biology of aging. Cell 96, 291-302.
Ko, L. J., and Prives, C. (1996). p53: puzzle and paradigm. Genes & Dev. 10, 1054-1072.
Levine, R. L., and Stadtman, E. R. (1996). Protein modifications with aging. In Handbook of the Biology of Aging (Schneider, E. L., and Rowe, J. W., eds) pp. 184-197, Academic Press, New York.
Lin, A. W., Barradas, M., Stone, J. C., Aelst, L., Serrano, M., and Lowe, S. W. (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes & Dev. 12, 3008-3019.
Liu, T. Z., Lin, T. F., Hung, I. J., Wei, J. S., and Chiu, D. T. Y. (1994). Enhanced susceptibility of erythrocytes deficient in glucose-6-phosphate dehydrogenase to alloxan/glutathione-induced decrease in red cell deformability. Life Sci. 55, 55-60.
Longo, L., Rosti, V., Gaboli, M., Tabarini, G. D., Pandolfi, P. P., Luzzatto, L. (1997). Mice heterozygous for complete glucose-6-phosphate (G6PD) deficiency are viable and show somatic cell selection. Blood 95 (Suppl. 1), 408a.
Luzzatto, L., and Testa, U. (1978). Human erythrocyte glucose-6-phosphate dehydrogenase: structure and function in normal and function in normal and mutant subjects. Curr. Topics in Hematology 1, 1-70.
Luzzatto, L., and Battistuzzi, G. (1985). Glucose-6-phosphate dehydrogenase. Adv. Human Genet. 14, 217-229.
McConnell, B. B., Starborg, M., Brookes, S., and Peters, G. (1998). Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351-354.
Naylor, C. E., Rowland, P., Basak, A. K., Gover, S., Mason, P. J., Bautista, J. M., Vulliamy, T. J., Luzzatto, L., and Adams, M. J. (1996). Glucose-6-phosphate dehydrogenase mutations causing enzyme deficiency in a model of the tertiary structure of the human enzyme. Blood 87, 2974-2982.
Niazi, G. A. (1991). Glucose-6-phosphate dehydrogenase deficiency and diabetes. Int. J. Hematology 54, 295-298.
Niort, G., Boccuzzi, G., Brignardello, E., Bonino, L., and Bosta, A. (1985). Effect of dehydroepiandrosterone on human erythrocytes redox metabolism: inhibition of glucose-6-phosphate dehydrogenase activity in vivo and in vitro. J. Steroid Biochem. 23, 657-661.
Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M., and Smith, J. R. (1994). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211, 90-98.
Ogryzko, V. V., Hirai, T. H., Russanova, V. R., Barbie, D. A., and Howard, B. H. (1996). Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol. Cell. Biol. 16, 5210-5218.
Orr, W. C., and Sohal, R. S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130.
Packer, L. (1995). Oxidative stress, antioxidant, aging and disease. In Oxidative stress and Aging (Cutler, R. G., Packer, L., Bertram, J., and Mori, A., eds) pp. 1-14, Birkhäuser Verlag, Boston.
Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F., and Luzzatto, L. (1995). Targeted disruption of the housekeeping gene encoding glucose-6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209-5215.
Papaconstantinou, J., Reisener, P. D., Liu, L., and Kuninger, D. T. (1996). Mechanisms of altered gene expression with aging. In Handbook of the Biology of Aging (Schneider, E. L., and Rowe, J. W., eds) pp. 150-183, Academic Press, New York.
Parkes, T. L., Elia, A. J., Dickinson, D., Hilliker, A. J., Philips, J. P., and Boulianne, G. L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171-174.
Pear, W. (1996). Transient transfection methods for preparation of high-titer retroviral supernatants. In Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E, Moore, D. D., Seidman, J. G., and Struhl, K., eds) pp. 9.11.1-9.11.18, Greene Publishing Associates and Wiley-Interscience, New York.
Petrakis, N. L., Wiesenfeld, S. L., Sams, B. J., Collen, M. F., Cutler, J. L., and Siegelaub, A. B. (1970). Prevalence of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency: decline with age in the frequency of G-6-PD-deficient Negro males. New Eng. J. Med. 282, 767-770.
Pines, J. (1997). Mammalian cell cycle control. In Oncogenes and Tumour Suppressors (Peters, G., and Vousden, K. H., eds) pp. 189-231, IRL Press, New York.
Preville, X., Salvemini, F., Giraud, S., Chaufour, S., Paul, C., Stepien, G., Ursini, M. V., Arrigo, A. P. (1999). Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp. Cell Res. 247, 61-78.
Randerath, K., Randerath, E., and Filburn, C. (1996). Genomic and mitochondrial DNA alterations with aging. In Handbook of the Biology of Aging (Schneider, E. L., and Rowe, J. W., eds) pp. 198-214, Academic Press, New York.
Royall, J. A., and Ischiropoulos, H. (1993). Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophy. 302, 348-355.
Schaffer, W. T. (1985). Effect of growth hormones on lipogenic enzyme activities in cultured rat hepatocytes. Am. J. Phsiol. 248, E719-725.
Scott, M. D., Zuo, L., Lubin, B. H., and Chiu, D. T. Y. (1991). NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood 77, 2059-2064.
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.
Sochor, M., Kunjara, S., Greenbaum, A. L., and McLean, P. (1986). Renal hypertrophy in experimental diabetes. Effect of diabetes on the pathways of glucose metabolism: differential response in adult and immature rats. Biochem. J. 234, 573-577.
Stein, G. H., and Dulić, V. (1995). Origins of G1 arrest in senescent human fibroblasts. Bioessay 17, 537-543.
Stein, G. H., Drullinger, L. F., Soulard, A., Dulić, V. (1999). Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109-2117.
Stevans, D. J., Wanachiwanawin, W., Mason, P. J., Vulliamy, T. J., and Luzzatto, L. (1990). G6PD Canton a common deficient variant in South East Asia caused by a 459 Arg → Leu mutation. Nucleic Acids Res. 18, 7190.
Sugrue, M. M., Shin, D. Y., Lee, S. W., and Aaronson, S. A. (1997). Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci. 94, 9648-9653.
Sulis, E. (1972). G6PD deficiency and cancer. Lancet 1, 1185.
Sun, J. T., and Tower, J. (1999). FLP-recombinase-mediated induction of Cu/Zn superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216-228.
Sun, Y. (1990). Free radicals, antioxidant enzymes, and carcinogenesis. Free Rad. Biol. Med. 8, 583-599.
Tian, W. N., Braunstein, L. D., Pang, J., Stuhlmeier, K. M., Xi, Q. C., Tian, X., and Stanton, R. C. (1998). Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273, 10609-10617.
Tsai, K. J., Tsou, Y. H., Huang, S. W., Hung, I. J., and Chiu, D. T. Y. (1997). Molecular studies of three naturally occurring human glucose-6-phosphate dehydrogenase (G6PD) variants associated with mutation of arginine: Possibly related to NADP+ binding. Blood 90 (Suppl.), 21I.
Tsai, K. J., Hung, I. J., Chow, C. K., Stern, A., Chao, S. S., and Chiu, D. T. Y. (1998). Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose-6-phosphate dehydrogenase-deficient granulocytes. FEBS Lett. 436, 411-414.
Tsou, Y. H. (1995). Biochemical characterization of the three arginine residues in close proximity to the putative NADP+ binding site of the human glucose-6-phosphate dehydrogenase. Master Thesis, Fu-jen Catholic University, Taipei.
Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., and Obeid, L. M. (1995). Role of ceramide in cellular senescence. J. Biol. Chem. 270, 30701-30708.
Vogt, m., Haggblom, C., Yeargin, J., Christiansen-Weber, T., and Hass, M. (1998). p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ. 9, 139-146.
Vojta, P. J., and Barrett, J. C. (1995). Genetic analysis of cellular senescence. Biochim. Biophy. Acta 1242, 29-41.
Wright, W. E., and Shay, J. W. (1995). Time, telomeres and tumours: is cellular senescence more than an anticancer mechanism? Trends Cell Biol. 5, 293-297.
Yoshimoto, K., Nakamura, T., and Ichihara, A. (1983). Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose-6-phosphate dehydrogenase and suppression of malic enzyme and lipogenesis. J. Biol. Chem. 258, 12355-12360.
Zhu, J., Woods, D., McMahon, M., and Bishop, M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes & Dev. 12, 2997-3007.
Zuo, L., Chen, E., Du, C. S., Chang, C. N., and Chiu, D. T. Y. (1990). Genetic study of Chinese G6PD variants by direct PCR sequencing. Blood 76 (Suppl.), 51a.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊