跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何冠賢
研究生(外文):He, Guan-Sian
論文名稱:多項式模糊系統穩定性分析
論文名稱(外文):Stability Analysis of Polynomial Fuzzy Systems
指導教授:余國瑞余國瑞引用關係
指導教授(外文):Yu, Gwo-Ruey
口試委員:黃國勝鄭智湧莊智清
口試委員(外文):Hwang, Kao-ShingCheng, Chih-YungJuang, Jyh-Ching
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:135
中文關鍵詞:多項式糢糊系統輸出輸入限制平方和多項式時間延遲系統多項式糢糊控制器多項式尼亞布諾夫函數穩定性穩定化時間延遲
外文關鍵詞:Polynomial fuzzy systemConstraints of input and outputSum of squarePolynomial fuzzy control system of time delayPolynomial fuzzy controllerPolynomial Lyapunov functionStabilityStabilizationTime delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文利用多項式模糊系統的概念,來建立四輪全向型行動機器人(ODMR)的多項式模糊模型,再根據平行分部補償(PDC)來設計行動機器人的多項式模糊控制器,此控制器使整個閉迴路行動機器人能追蹤參考軌跡,以達到控制追蹤的目的,為了確保使用的控制器穩定性,利用多項式尼亞布諾夫函數(polynomial Laypunov function)所推導的平方和(sum of square)不等式條件來驗證系統的全域穩定.
利用平方和(SOS)方法,推導出非線性系統輸出和輸入限制設計條件,藉由平方和條件得到之控制器增益能夠滿足閉迴路系統最大輸入或輸出限制,相較於傳統線性矩陣不等式(LMI)的輸入和輸出限制條件中,本論文所提出的平方和限制條件包含了傳統LMI的不等式條件,以至於平方和方法將更一般性(general)以及能求解的空間(feasible)更大.
  尤其這篇論文的焦點是在於提出了利用多項式尼亞布諾夫函數推導出當非線性系統具時間延遲的穩定和穩定化條件,而且傳統LMI所利用二次尼亞布諾夫函數為多項式尼亞布諾夫函數的一個特例,再將多項式模糊系統所使用的SOS的不等式條件,可使用最近發展在MATLAB的SOSTOOLS來做數值解,為了陳述本論文設計方法的有效性,將會提出例子來與傳統方法做模擬比較驗證.

This study presents a polynomial fuzzy model and a path controller design for a nonlinear four-wheeled omnidirectional mobile robot (ODMR) using polynomial fuzzy systems. A polynomial controller was designed according to the parallel distributed compensation (PDC) from the given polynomial fuzzy model of the ODMR. This proposed controller is capable of driving the closed-loop system states of the ODMR to follow reference trajectory commands. We used stability conditions that were represented by the sum of squares (SOS) to guarantee global stability.
 In addition, we derived the limitation conditions represented in term of SOS for control input and output using a polynomial Lyapunov function. The stable polynomial controller satisfied the constraint on the control input and output. These proposed SOS-based constraint conditions are more general and relaxed than are current linear matrix inequality (LMI)-based constraint conditions.
 This study focuses on developing methods for stability analysis and stabilization based on the SOS approach and that depend on the size of the time-delay. A polynomial Lyapunov function was applied to derive the stability and stabilization time-delay conditions of the nonlinear time-delay systems, and contained quadratic Lyapunov functions as a special case. Finally, computer simulations showed that the SOS-based approaches were more effective than were the LMI-based approaches.

誌謝 I
摘要 II
Abstract III
Table of Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contribution and Thesis Organization 5
Chapter 2 Stability Analysis of Polynomial Fuzzy Systems with Constraints 7
2.1 Introduction 7
2.2 Polynomial Fuzzy Systems 8
2.2.1 Stability Conditions 11
2.2.2 Stabilization Conditions 13
2.2.3 Simulation 17
2.3 Polynomial Fuzzy Systems with Constraints 28
2.3.3 Simulation 34
Chapter 3 Stability Analysis of Polynomial Fuzzy Systems with Time-Delay 46
3.1 Introduction 46
3.2 T-S Fuzzy Systems with Time-Delay 48
3.2.1 Delay Independent Stability and Stabilization Conditions 49
3.2.2 Delay-dependent Stability and Stabilization Conditions 51
3.3 Polynomial Fuzzy Systems with Time-Delay 57
3.3.1 Delay Independent Stability and Stabilization Conditions 58
3.3.2 Delay-Dependent Stability and Stabilization Conditions 65
3.4 Simulation 88
Chapter 4 Conclusion 115
Reference 117
Appendix 121

[1]Kazuo Tanaka and Michio Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems 45 (1992) 135-156, pp.143-145
[2]K. Tanaka and H. O. Wang, “Fuzzy Control System Design and Analysis – A Linear Matrix Inequality Approach,” Wiley, NY, 2001.
[3]J.G.Kushewski et. Al., “Application of Feedforward Neural Networks to Dynamical System Identification and Control, ” IEEE Trans. Control Sys. Technol., Vol. 1,No. 1,pp.37-49(1993)
[4]K. Watanabe, “Control of an omnidirectional mobile robot,” in Proc. of the 1998 IEEE Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 51-60, 1998.
[5]K.Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Journal of Intelligent and Robotic System, Vol.22, No. 3, pp.315-330, 1998.
[6]Lam, H.K., Lee, T.H., Leung, F.H.F. and Tam, P.K.S., “Fuzzy Model Reference Control of Wheeled Mobile Robots,” The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 525-528, 2001.
[7]Gwo-Ruey Yu, Yu-Hsuan Chen, “Path controller design of a mobile robot based on T-S fuzzy sliding control,” The 8th Asian Control Conference, pp.430-435, 2011.
[8]Kazuo Tanaka, Hioroto Yoshida, Hioroshi Ohtake and Hua O.Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. on Fuzzy System, Vol. 17, No. 4. 2009
[9]Guoyong Huang, Guoliang Ma, Daobo Wang, “Stabilization control of switched nonlinear system based on sum of square decomposition, “Proceedings of the 7th World Congress on Intelligent Control and Automation June 25 - 27, 2008, Chongqing, China, pp.8040-8043
[10]Tanaka. Kazuo Tanaka, Hiroto Yoshida, Hiroshi Ohtake and Hua O. Wang, “Stabilization of Polynomial Fuzzy Systems via a Sum of Squares Approach, “ 22nd IEEE International Symposium on Intelligent Control Part of IEEE Mulit-conference on Systems and Control Singapore,1-3 October 2007, pp.162-164
[11]Naofumi Nishihira, Kazunori Yasuda, “LMI approach in stability and control of time-delay system,”SICE Annual Conference in Fukui, August4-6, pp.1791-1796, 2003
[12]X. Li and C.E. de Souza ,” Delay-dependent robust stability and stabilization of uncertain linear delay system: A linear matrix inequality approach,” IEEE Trans. on Automatic Control, AC-42, 8, pp.1144-1148, 1997
[13]Srephen Prajna, Antonis Papachristodoulou, Peter Seiler and Pablo A. Parrilo, “ SOSTOOLS Sum of Squares Optimization Toolbox for MATLAB User’s guide,” version 2.00 June 1, 2004
[14]Srephen Prajna, Antonis Papachristodoulou, Peter Seiler and Pablo A. Parrilo, “ SOSTOOLS and its Control Applications.” June 1, 2004
[15]Jack K. Hale, Sjoerd M. Verduyn Lunel, “Introduction to Functional Differential Equations,” Springer-Verlag
[16]Jean-Jacques E. Slotine, Weiping Li, “Applied Nonlinear Control,” Prentice Hall
[17]X.P. Guan, C.L. Chen, “Delay-dependent guaranteed cost control for T–S fuzzy systems with time delays,” IEEE Trans. Fuzzy Systems 12 (2)(2004) 236–249.
[18]E. Fridman, U. Shaked, “Delay-dependent stability and H∞ control: constant and time-varying delays,” Internat. J. Control 76 (1) (2003) 48–60.
[19]Y.Y. Cao, P.M. Frank, “Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models,” Fuzzy Setsand Systems 124 (2) (2001) 213–219.
[20]H.-N.Wu and H.-X. Li, “New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time varying delay,” IEEE Trans. Fuzzy Syst., vol. e-15, no. 3, pp. 482–493,Jun. 2007.
[21]C.L. Chen, G. Feng, X.P. Guan, “Delay-dependent stability analysis and controller synthesis for discrete-time T– S fuzzy systems with time delays,” IEEE Trans. Fuzzy Systems 13 (5) (2005) 630–643.
[22]Ohtake, H., Tanaka, K., Wang, H.O., “Piecewise Fuzzy Model Construction and Controller Design based on Piecewise Lyapunov Function,”American Control Conference, 2007. ACC '07

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊