跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳秉科
研究生(外文):Bing-Ke Chen
論文名稱:人工視網膜電極之加速老化實驗
論文名稱(外文):Accelerated Aging Study to Electrode Materials Used for Retinal Prosthesis
指導教授:張寅張寅引用關係
指導教授(外文):Yin Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:人工視網膜加速老化電極電化學
外文關鍵詞:Artificial RetinaAccelerated AgingElectrodeElectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:2
目的:通常短期的微量的電化學反應會導致材料出現無法觀察到的受損,只有在經過長時間的測試才能觀察到。為了要在短時間內觀察到材料的老化現象,本研究嘗試以加速材料老化的方法來達到此目的。
方法:本實驗利用金、鉑、鈦、鉭四種金屬做為電極的材料,並且利用PBS溶液模擬視網膜的環境。在37℃、50℃、80℃三種溫度下,分別給各電極材料電流,振幅及通電時間分別為±100μA,31μs、±75μA,62μs、±50μA,125μs、±25μA,250μs,頻率皆為1kHz。電極片通電時間24天後測量電極片的表面粗糙度;金屬線材電極分別經過7天與63天後利用ICP測量PBS溶液中金屬的濃度;金屬線材電極經過63天後拍攝SEM。依據阿瑞尼斯方程式(Arrhenius equation)指出溫度影響化學反應速率的方程式,用來進行材料老化的預測。
結果:利用ICP測量PBS溶液中金屬離子的濃度,得到的值接近或低於最低極限值,可以推測使用雙向刺激電流可以減少金屬離子殘留在生物體內的含量。利用測量電極表面粗糙度,可以進一步計算出在80℃時Au的加速老化時間可達到43倍;Pt的加速老化時間可達到16倍;Ti的加速老化時間可達到26倍;Ta的加速老化時間可達到29倍。
結論:本實驗利用溫度可以加快化學反應的特性,想要建立出溫度對電極使用壽命的情形。本實驗的時間長度及使用的材料與溫度與檢驗的方式可能並無法建立一個完全的電極老化模型,但嘗試這個方式的結果,也可粗略的得到不同金屬在相似的環境下,其相對老化速率的比較,可以作為電極選擇的參考。

Objective:It is difficulty to observe the damage occurred in a material for a short term mild electrochemical reaction, however, it can be observed through a prolong test. In order to observe the aging phenomenon in a material in a relative short time, we try to speed up the aging process in chosen materials.
Method:Four kinds of metal, gold, platinum, titanium, and tantalum employed for electrode materials were chosen in this study. PSB solution was used as a medium for simulating the environment in retina. For each material, the conduction currents with magnitude and conducting time through the materials are designed as ± 100μA ,31μs; ± 75μA, 62μs; ± 50μA, 125μs; ± 25μA, 250μs, with frequency of 1kHz that under environmental temperatures of 37, 58 and 80℃ respectively. Surface roughness and metal concentration in PBS solution were measured by surface contour instrument(KLA-Tencor αstep-500), and inductively coupled plasma optical emission spectrometer(ICP-OES Varian 700ES) at 24th day, and 7th and 63th day respectively after starting the simulation. Estimation for material aging extent will be calculated according to Arrhenius equation which is an equation of temperature dependent chemical reaction.
Result:Results of the remaining metal ion in PBS solution are undetectable or below the detecting limitation of ICP, indicating that biphasic current stimulation is applicable while used for exciting neurons. For surface roughness measurements, it is estimated that the aging acceleration rate can be up to 43, 16, 26, and 29 folds for Au, Pt, Ti, and Ta respectively at 80℃ while compared to at 37℃ in 24 days.
Conclusion:Increasing temperature can speed up chemical reaction rate. It can be used to build electrode aging process model in this study. Although it may not be able to build a complete aging process model for an electrode in this study due to finite experimental time, materials being used, temperature settings and measuring methods, however, the results still can give references for further selecting electrode material according to the relative aging process rates under the same environment of the tests.

中文摘要 Ⅰ
ABSTRACT Ⅱ
目錄 Ⅲ
圖表目錄 VI
第一章 緒論 1
1-1研究動機 1
1-2研究目的 1
1-3眼球構造 1
1-3-1 眼球 1
1-3-2 視網膜 2
1-4人工視網膜 4
1-4-1上視網膜刺激電極 4
1-4-2下視網膜刺激電極 5
1-5適用人工電子眼的疾病 7
1-5-1色素性視網膜炎 7
1-5-2老年性黃斑部病變 7
第二章 原理及相關研究 9
2-1彈性疲乏現象 9
2-2電極的老化現象 10
2-3如何加快老化現象 10
2-3-1 溫度對反應速率的影響 10
2-3-2 電化學反應動力學 11
2-4阿瑞尼斯方程式ARRHENIUS EQUATIO 13
2-4-1 應用阿瑞尼斯方程式 13
2-4-2 Arrhenius equation 13
第三章 實驗架構及方法 16
3-1電極材料與製備電極 16
3-1-1電極材料 16
3-1-2製備電極 17
3-2保溫箱及溫度記錄 18
3-2-1溫控電路 18
3-2-2 8051與PC通訊電路 20
3-2-3 PC端利用Visual Basic6.0 記錄溫度 21
3-3可控式電壓控制電流源電路 23
3-3-1雙向刺激電流 23
3-3-2電壓控制電流源電路 24
3-3-3可控式電壓控制電流源電路 25
3-4表面粗糙度(RA) 27
3-4-1 Ra的定義 27
3-4-2表面輪廓儀(alpha-step) 28
3-5感應耦合電漿發射光譜儀(ICP-OES) 28
第四章 結果 30
4-1溫度控制 30
4-2刺激電流波形圖 31
4-3 電流源穩定性 33
4-4 測量RA的結果 34
4-5 ICP-OES的結果 40
4-6 預測加速老化所需的時間 41
4-7 金屬線材的SEM 43
4-7-1 Au的SEM 43
4-7-2 Pt的SEM 47
4-7-3 Ti的SEM 50
4-7-4 Ta的SEM 54
第五章 討論 58
5-1電刺激的頻率 58
5-2 材料 58
5-3電化學 58
5-4加速實驗的限制條件 59
5-5為何電化學的結果不理想 59
5-5-1測量Ra值所造成的原因 59
5-5-2電極的來源 60
5-5-3可改善的方式 61
第六章 結論 62
參考文獻 63


參考文獻
[1] R. Eckmiller, “Learning retina implants with epiretinal contacts,” Ophthalmic Res. vol. 29, pp. 281-289, 1997.
[2] G. Peyman, A.Y. Chow, C. Liang, V. Y. Chow, J. I. Perlman, and N. S. Peachy,“ Subretinal semiconductor microphotodiode array,” Ophthalmic Surg. vol. 29, pp. 234-241, 1998.
[3] 張朝凱, “準分子雷射屈光性角膜手術學”, 科學技術文獻出版社, 2004年
[4] F. Bear, W. Connors, A. Paradiso, “Neuroscience Exploring the Brain” Lippincott Williams & Wilkins, Third Edition. pp. 289, 2007.
[5] A. Hung, D. Zhou, R. Greenberg, J. W. Judy, “Micromachined electrodes for retinal prostheses,” 2nd Annu. Int. IEEE-EMB Special Topic Conf. on Microtechnologies in Medicine & Biology, pp. 76-79, 2002.
[6] W. Liu, E. McGucken, M. Clements, S. C. DeMarco, K. Vichienchom, C. Hughes, M. S. Humayun, E. de Juan, J. Weiland, and R. Greenberg, “An implantable neuro-stimulator device for a retinal prosthesis,” IEEE Int. Solid-State Circuits Conf., pp. 216–217, 1999.
[7] W. Liu, E. McGuken, K. Vichienchom, M. Clements, E. de Juan, and M. S. Humayun, “Dual unit visual intraocular prosthesis,” IEEE Eng. Med. Biol. Mag. pp. 2303–2306, 1997.
[8] J. F. Rizzo, M. Socha, D. Edell, B. Antkowiak, and D. Brock, “Development of a silicon retinal implant: Surgical methods and mechanical design,” Ophthal. Vis. Sci. vol.34, pp. 15-35, 1994.
[9] H. Kanda, T. Yagi, Y. Ito, S. Tanaka, M. Watanabe, Y. Uchikawa, “Efficient stimulation inducing neural activity in retinal implant,” IEEE on Systems, Man, and Cybernetics, vol. 4, pp. 409-413, 1999.
[10] E. Zrenner, K. D. Miliczek, and V. P. Gabel et al. ,“The development of subretinal microphotodiodes for replacement of degenerated photoreceptors,” Ophthalmic Res. vol. 29, pp. 269-280, 1997.
[11] C.Y. Wu, C. T. Chiang,“ A low-photocurrent CMOS retinal focal-plane sensor with pseudo-BJT smoothing network and adaptive current Schmitt trigger for scanner applications,” IEEE Sensors. vol. 2, pp. 1147-1152, 2003.
[12] C. Y. Wu, H. C. Huang, L. J. Lin, and K. H. Huang,“ A new pseudo-bipolar-Junction-transistor (PBJT) and its application in the design of retinal smoothing network,” IEEE Int. Symp. Circuits and Syst. vol. 2, pp.125-128, 2002.
[13] H. C. Jiang and C. Y. Wu,“ A 2-D velocity and direction-selective sensor with BJT-based silicon retina and temporal zero-crossing detector,” IEEE Int. Solid-State Circuits Conf., vol. 34, pp. 241-247, 1999.
[14] C. F. Chiu; C. Y. Wu, “The design of rotation-invariant pattern recognition using the silicon retina,” IEEE Int. Solid-State Circuits Conf., vol. 32, pp. 526-534, 1997.
[15] J. Kanski, “Clinical Ophthalmology a systematic approach” Butterworth Heinemann 5th ed, pp. 491, 2003.
[16] 李名揚, “視網膜晶片讓盲人重見光明”《科學人》 70期 2007年
[17] J. Kanski, “Clinical Ophthalmology a systematic approach” Butterworth Heinemann 5th ed, pp. 405, 2003.
[18] 熊楚強、王月著,“電化學”,文京圖書有限公司, 1997年
[19] 胡啟章, “電化學原理與方法”,五南圖書出版股份有限公司, 2002年
[20] W. Nelson, “Accelerated Testing: Statistical Models, Test Plans and Data Analysis” John Wiley and Sons, 1990.
[21] W. S. Shelton, and D. G. Bright, “Using the Arrhenius Equation and Rate Expressions to Predict the Long-Term Behavior of Geosynthetic Polymers,” Proceedings of the Geosynthetics ’93 Conference, Vancouver, pp. 789-802, 1993.
[22] K. J. Hemmerich, “Accelerated Aging: General Aging Theory and Simplified Protocol for Accelerated Aging of medical Devices.” Medical Plastics and Biomaterials Magazine MPB Article Index, July 1998.
[23] D. R. Lide,“CRC Handbook of Chemistry and Physics” CRCnetBASE, 84th ed. pp. 4-13, 2003.
[24] 蘇明德,“鉑的自述”《科學發展》407期pp.36-43, 2006年
[25] 蘇明德,“鈦的自述”《科學發展》426期pp.66-71, 2008年
[26] D. R. Lide,“CRC Handbook of Chemistry and Physics” CRCnetBASE, 84th ed. pp. 4-30, 2003.
[27] 淡江大學微機電實驗室
[28] 許永和,“介面設計與實習-使用Visual Basic”,全華科技圖書公司, 2005年
[29] M. Leigh, G. Hommelwerke, “Surface Texture Analysis the Handbook”, Hommelwerke GmbH, West Germany, 1992.
[30] 中央研究院化學研究所
[31] http://www.dls.ym.edu.tw/neuroscience/ap_c.html
[32] H. K. Trieu, L. Ewe, W. Mokwa, M. Schwarz, B. J. Hosticka,”Flexible silicon structures for a retina implant,” in Proc. of 11th Annu. Int. Workshop on Microelectromechanical Systems, pp. 515-519, 1998.
[33] A. Hung, D. Zhou, R. Greenberg, J. W. Judy. ”Micromachined Electrodes for Retinal Prosthese,” 2 Annual International IEEE-MEBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 76-79, 2002.
[34]http://zh.wikipedia.org/zh-tw/%E7%83%AD%E8%86%A8%E8%83%80%E7%B3%BB%E6%95%B0

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top